skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching Series and Parallel Connections
Contribution: A new operational definition of series connections is given based on elements belonging to the same two meshes, which is properly dual to the usual definition of parallel elements being connected to the same two nodes. Furthermore, computer-based exercises have been developed and tested to teach students about such connections in gateway linear circuits courses, using color coding of nodes and meshes as a pedagogical device. Background: Series and parallel connections are a crucial but difficult concept. Existing textbooks give them limited attention, resulting in later difficulties learning circuit analysis. Research Questions: RQ1: Can an improved definition of series elements aid student understanding and student satisfaction? RQ2: Can a computer-based ``game'' lead to effective mastery and student satisfaction at a wide range of institutions, including minority-serving ones? Methodology: Standard and new definitions were elaborated in a multiple-choice tutorial. A game was developed focusing on identifying series and parallel connections, with color coding of both nodes and meshes. Student learning was assessed over eight years using pretest and posttest in 14 varied institutions. Student opinions were assessed using several types of surveys. Findings: Strong learning gains were observed every semester from built-in pretest and posttest, with average scores of 28% and 87%, respectively. Large improvements were observed at every institution including five minority-serving ones. The posttest score is increased by a statistically significant amount after introducing the new definition of series elements. Students preferred the new definition of series and recommended its use, and very strongly endorsed color coding.  more » « less
Award ID(s):
1821628
PAR ID:
10342712
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Education
ISSN:
0018-9359
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sufficiently serving computer science students at minority-serving institutions entails systematic communication of the "hidden curriculum"- the unwritten rules and tacit norms of traversing a disciplinary academic space- knowledge that students might learn from those with college-going backgrounds. At Kean University, department-run new student orientation has become a mechanism for integrating new students into the institution and the computer science department's community. The course addressed what Kezar and Holcombe call "Elements of STEM student success," or the needs of students at the intersection of first-generation familial experiences and STEM student college newcomers. In this work-in-progress experience report, we use data from retrospective pre-post surveys to show that student participants in the orientation indicate greater intent to engage in high-impact practices, greater confidence in their major choice, and strong identification with their STEM discipline. The authors discuss how systemic, department-level orientation processes at institutions that serve underrepresented student populations can impart academic and career path blueprints that move beyond institutional retention and improve equitable advancements in computing. 
    more » « less
  2. Past studies on the differential effects of active learning based on students’ prior preparation and knowledge have been mixed. The purpose of the present study was to ask whether students with different levels of prior preparation responded differently to laboratory courses in which a guided-inquiry module was implemented. In the first study, we assessed student scientific reasoning skills, and in the second we assessed student experimental design skills. In each course in which the studies were conducted, student gains were analyzed by pretest quartiles, a measure of their prior preparation. Overall, student scientific reasoning skills and experimental design skills did not improve pretest to posttest. However, when divided into quartiles based on pretest score within each course, students in the lowest quartile experienced significant gains in both studies. Despite the significant gains observed among students in the lowest quartile, significant posttest differences between lowest and highest quartiles were observed in both scientific reasoning skills and experimental design skills. Nonetheless, these findings suggest that courses with guided-inquiry laboratory activities can foster the development of basic scientific reasoning and experimental design skills for students who are least prepared across a range of course levels and institution types. 
    more » « less
  3. Building on prior studies that show a sense of belonging and community bolster student success, we developed a pilot program for computer engineering (CpE) and computer science (CS) undergraduates and their families that focused on building a sense of belonging and community supported by co-curricular and socioeconomic scaffolding. As a dually designated Hispanic-Serving Institution (HSI) and Asian American and Native American Pacific Islander-Serving Institution (AANAPISI) – two types of federally designated Minority-Serving Institutions (MSI) – with 55% of our undergraduates being first-generation students, we aimed to demonstrate the importance of these principles for underrepresented and first-generation students. Using a student cohort model (for each incoming group of students) and also providing supports to build community across cohorts as well as including students’ families in their college experiences, our program aimed to increase student satisfaction and academic success. We recruited two cohorts of nine incoming students each across two years, 2019 and 2020; 69% of participants were from underrepresented racial or minority groups and 33% were women. Each participant was awarded an annual scholarship and given co-curricular support including peer and faculty mentoring, a dedicated cohort space for studying and gathering, monthly co-curricular activities, enhanced tutoring, and summer bridge and orientation programs. Students’ families were also included in the orientation and semi-annual meetings. The program has resulted in students exceeding the retention rates of their comparison groups, which were undergraduates majoring in CpE and CS who entered college in the same semester as the cohorts; first- and second-year retention rates for participants were 83% (compared to 72%) and 67% (compared to 57%). The GPAs of participants were 0.35 points higher on average than the comparison group and, most notably, participants completed 50% more credits than their comparison groups, on average. In addition, 9 of the 18 scholars (all of the students who wanted to participate) engaged in summer research or internships. In combination, the cohort building, inclusion of families, financial literacy education and support, and formal and informal peer and faculty mentoring have correlated with increased academic success. The cohorts are finishing their programs in Spring 2023 and Spring 2024, but data up to this point already show increases in GPA, course completion, and retention and graduation rates, with three students having already graduated early, within three and a half years. The findings from this study are now being used to expand the successful parts of the program and inform university initiatives, with the PI serving on campus-wide STEM pipeline committee aiming to recruit, retain, and support more STEM students at the institution. 
    more » « less
  4. Abstract: Embodied Code is a visual programming language in virtual reality (VR). It introduces novices to fundamental computing concepts and immersive game engines through hands-on creative coding. Unlike traditional creative coding toolkits, this system harnesses the visuospatial and kinesthetic affordances of VR to engage users in embodied computer science learning. Coders are afforded considerable flexibility in placing, rearranging, and manipulating elements of code (nodes and connectors) and its output such that space and movement can be leveraged as organizational and conceptual scaffolds. Further, assembling nodes and connectors is guided by two simple principles – input versus output and events versus data. These design principles were adopted to foster analogical mappings between physical experiences of working with code and output in an immersive virtual space and perception and action in the real world. Further, they were purposed for exploring different levels of coding abstraction in classroom use. 
    more » « less
  5. A recent initiative from the National Science Foundation (NSF), IUSE/PFE: REvolutionizing engineering and computer science Departments (RED), is serving as a catalyst to encourage widespread, revolutionary, and radical change in engineering and computer science departments across the nation. After two years and 13 RED awards being funded, there is little diversity in the types of institutions—one is private, two are undergraduate-focused, and two are Hispanic-serving institutions. To address this lack of institutional diversity in funded RED projects, previous awardees of the program utilized a framework developed by the team, termed institutional mentoring, to develop a series of webinars aimed at helping diverse institutions envision a revolutionary idea for radically changing their program, assembling a team capable of realizing this vision, and using change strategies to help increase the likelihood of success and lasting change. This team deliberately reached out to Historically Black Colleges and Universities (HBCUs) and minority-serving institutions in an attempt to make more diverse institutions aware of this opportunity, with the hopes of increasing submissions of proposals to the RED program and the quality and likelihood of success for these proposals. In this paper, we describe the institutional mentoring framework, the process used in developing the seminars, and a synopsis of the sessions that made up the webinar. 
    more » « less