Extreme precipitation events can cause significant impacts to life, property, and the economy. As forecasting capabilities increase, the subseasonal-to-seasonal (S2S) time scale provides an opportunity for advanced notice of impactful precipitation events. Building on a previous workshop, the Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted a second workshop virtually in the fall of 2021. The workshop engaged a variety of practitioners, including emergency managers, water managers, tribal environmental professionals, and National Weather Service meteorologists. While the team’s first workshop examined the “big picture” in how practitioners define “extreme precipitation” and how precipitation events impact their jobs, this workshop focused on details of S2S precipitation products, both current and potential future decision tools. Discussions and activities in this workshop assessed how practitioners use existing forecast products to make decisions about extreme precipitation, how they interpret newly developed educational tools from the PRES2iP team, and how they manage uncertainty in forecasts. By collaborating with practitioners, the PRES2iP team plans to use knowledge gained going forward to create more educational and operational tools related to S2S extreme precipitation event prediction, helping practitioners to make more informed decisions.
- Award ID(s):
- 1663840
- PAR ID:
- 10342743
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- Volume:
- 102
- Issue:
- 10
- ISSN:
- 0003-0007
- Page Range / eLocation ID:
- E1972 to E1986
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Extreme precipitation over a two-week period can cause significant impacts to life and property. Trustworthy and easy-to-understand forecasts of these extreme periods on the subseasonal-to-seasonal timeframe may provide additional time for planning. The Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted three workshops over six years to engage with stakeholders to learn what is needed for decision-making for subseasonal precipitation. In this study experimental subseasonal to seasonal (S2S) forecast products were designed, using knowledge gained from previous stakeholder workshops, and shown to decision-makers to evaluate the products for two 14-day extreme precipitation period scenarios. Our stakeholders preferred a combination of products that covered the spatial extent, regional daily values, with associated uncertainty, and text narratives with anticipated impacts for planning within the S2S timeframe. When targeting longer extremes, having information regarding timing of expected impacts was seen as crucial for planning. We found that there is increased uncertainty tolerance with stakeholders when using products at longer lead times that typical skill metrics, such as critical success index or anomaly correlation coefficient, do not capture. Therefore, the use of object-oriented verification, that allows for more flexibility in spatial uncertainty, might be beneficial for evaluating S2S forecasts. These results help to create a foundation for design, verification, and implementation of future operational forecast products with longer lead times, while also providing an example for future workshops that engage both researchers and decision-makers.
-
Abstract Extreme weather events have devastating impacts on human health, economic activities, ecosystems, and infrastructure. It is therefore crucial to anticipate extremes and their impacts to allow for preparedness and emergency measures. There is indeed potential for probabilistic subseasonal prediction on time scales of several weeks for many extreme events. Here we provide an overview of subseasonal predictability for case studies of some of the most prominent extreme events across the globe using the ECMWF S2S prediction system: heatwaves, cold spells, heavy precipitation events, and tropical and extratropical cyclones. The considered heatwaves exhibit predictability on time scales of 3–4 weeks, while this time scale is 2–3 weeks for cold spells. Precipitation extremes are the least predictable among the considered case studies. Tropical cyclones, on the other hand, can exhibit probabilistic predictability on time scales of up to 3 weeks, which in the presented cases was aided by remote precursors such as the Madden–Julian oscillation. For extratropical cyclones, lead times are found to be shorter. These case studies clearly illustrate the potential for event-dependent advance warnings for a wide range of extreme events. The subseasonal predictability of extreme events demonstrated here allows for an extension of warning horizons, provides advance information to impact modelers, and informs communities and stakeholders affected by the impacts of extreme weather events.more » « less
-
Abstract Extreme precipitation across multiple time scales is a natural hazard that creates a significant risk to life, with a commensurately large cost through property loss. We devise a method to create 14-day extreme-event windows that characterize precipitation events in the contiguous United States (CONUS) for the years 1915–2018. Our algorithm imposes thresholds for both total precipitation and the duration of the precipitation to identify events with sufficient length to accentuate the synoptic and longer time scale contribution to the precipitation event. Kernel density estimation is employed to create extreme-event polygons that are formed into a database spanning from 1915 through 2018. Using the developed database, we clustered events into regions using a k -means algorithm. We define the “hybrid index,” a weighted composite of silhouette score and number of clustered events, to show that the optimal number of clusters is 15. We also show that 14-day extreme precipitation events are increasing in the CONUS, specifically in the Dakotas and much of New England. The algorithm presented in this work is designed to be sufficiently flexible to be extended to any desired number of days on the subseasonal-to-seasonal (S2S) time scale (e.g., 30 days). Additional databases generated using this framework are available for download from our GitHub. Consequently, these S2S databases can be analyzed in future works to determine the climatology of S2S extreme precipitation events and be used for predictability studies for identified events.more » « less
-
Abstract The stratosphere has been identified as an important source of predictability for a range of processes on subseasonal to seasonal (S2S) time scales. Knowledge about S2S predictability within the stratosphere is however still limited. This study evaluates to what extent predictability in the extratropical stratosphere exists in hindcasts of operational prediction systems in the S2S database. The stratosphere is found to exhibit extended predictability as compared to the troposphere. Prediction systems with higher stratospheric skill tend to also exhibit higher skill in the troposphere. The analysis also includes an assessment of the predictability for stratospheric events, including early and midwinter sudden stratospheric warming events, strong vortex events, and extreme heat flux events for the Northern Hemisphere and final warming events for both hemispheres. Strong vortex events and final warming events exhibit higher levels of predictability as compared to sudden stratospheric warming events. In general, skill is limited to the deterministic range of 1 to 2 weeks. High‐top prediction systems overall exhibit higher stratospheric prediction skill as compared to their low‐top counterparts, pointing to the important role of stratospheric representation in S2S prediction models.