skip to main content


Search for: All records

Award ID contains: 1663840

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Extreme precipitation over a two-week period can cause significant impacts to life and property. Trustworthy and easy-to-understand forecasts of these extreme periods on the subseasonal-to-seasonal timeframe may provide additional time for planning. The Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted three workshops over six years to engage with stakeholders to learn what is needed for decision-making for subseasonal precipitation. In this study experimental subseasonal to seasonal (S2S) forecast products were designed, using knowledge gained from previous stakeholder workshops, and shown to decision-makers to evaluate the products for two 14-day extreme precipitation period scenarios. Our stakeholders preferred a combination of products that covered the spatial extent, regional daily values, with associated uncertainty, and text narratives with anticipated impacts for planning within the S2S timeframe. When targeting longer extremes, having information regarding timing of expected impacts was seen as crucial for planning. We found that there is increased uncertainty tolerance with stakeholders when using products at longer lead times that typical skill metrics, such as critical success index or anomaly correlation coefficient, do not capture. Therefore, the use of object-oriented verification, that allows for more flexibility in spatial uncertainty, might be beneficial for evaluating S2S forecasts. These results help to create a foundation for design, verification, and implementation of future operational forecast products with longer lead times, while also providing an example for future workshops that engage both researchers and decision-makers.

     
    more » « less
    Free, publicly-accessible full text available May 16, 2025
  2. Abstract

    As a result of climate change, extreme precipitation events are likely to become more common in Oklahoma, requiring cities and municipalities to plan for managing this extra water. There are multiple types of practitioners within communities who are responsible for overseeing planning for the future, including stormwater and floodplain management. These practitioners may be able to integrate weather and climate information into their decision-making to help them prepare for heavy precipitation events and their impacts. Floodplain managers from central and eastern Oklahoma were interviewed to learn what information they currently use and how it informs their decision-making. When making decisions in the short term, floodplain managers relied on weather forecasts; for long-term decisions, other factors, such as constrained budgets or the power of county officials, had more influence than specific climate predictions or projections. On all time scales, social networks and prior experience with flooding informed floodplain managers’ decisions and planning. Overall, information about weather and climate is just one component of floodplain managers’ decision-making processes. The atmospheric science community could work more collaboratively with practitioners so that information about weather and climate is more useful and, therefore, more relevant to the types of decisions that floodplain managers make.

     
    more » « less
  3. Abstract

    Extreme precipitation events can cause significant impacts to life, property, and the economy. As forecasting capabilities increase, the subseasonal-to-seasonal (S2S) time scale provides an opportunity for advanced notice of impactful precipitation events. Building on a previous workshop, the Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted a second workshop virtually in the fall of 2021. The workshop engaged a variety of practitioners, including emergency managers, water managers, tribal environmental professionals, and National Weather Service meteorologists. While the team’s first workshop examined the “big picture” in how practitioners define “extreme precipitation” and how precipitation events impact their jobs, this workshop focused on details of S2S precipitation products, both current and potential future decision tools. Discussions and activities in this workshop assessed how practitioners use existing forecast products to make decisions about extreme precipitation, how they interpret newly developed educational tools from the PRES2iP team, and how they manage uncertainty in forecasts. By collaborating with practitioners, the PRES2iP team plans to use knowledge gained going forward to create more educational and operational tools related to S2S extreme precipitation event prediction, helping practitioners to make more informed decisions.

     
    more » « less
  4. Abstract

    This study uses backward trajectories derived from North American Regional Reanalysis data for 19 253 flash flood reports during the period 2007–13 published by the National Weather Service to assess the origins of air parcels for flash floods in the conterminous United States. The preferred flow paths for parcels were evaluated seasonally and for six regions of interest: the West Coast, Arizona, the Front Range of the Rocky Mountains, Flash Flood Alley in south-central Texas, the Missouri Valley, and the Appalachians. Parcels were released from vertical columns in the atmosphere at times and locations where there were reported flash floods; these were traced backward in time for 5 days. The temporal and seasonal cycles of flood events in these regions are also explored. The results show the importance of trajectories residing for long periods over oceanic regions such as the Gulf of Mexico and the Caribbean Sea. The flow is generally unidirectional with height in the lower layers of the atmosphere. The trajectory paths from oceanic genesis regions to inland hotspots and their orientation with height provide clues that can assist in the diagnosis of impending flash floods. Part II of this manuscript details the land–atmosphere interactions along the trajectory paths.

     
    more » « less
  5. Abstract

    Backward trajectories were derived from North American Regional Reanalysis data for 19 253 flash flood reports published by the National Weather Service to determine the along-path contribution of the land surface to the moisture budget for flash flood events in the conterminous United States. The impact of land surface interactions was evaluated seasonally and for six regions: the West Coast, Arizona, the Front Range, Flash Flood Alley, the Missouri Valley, and the Appalachians. Parcels were released from locations that were impacted by flash floods and traced backward in time for 120 h. The boundary layer height was used to determine whether moisture increases occurred within the boundary layer or above it. Moisture increases occurring within the boundary layer were attributed to evapotranspiration from the land surface, and surface properties were recorded from an offline run of the Noah land surface model. In general, moisture increases attributed to the land surface were associated with anomalously high surface latent heat fluxes and anomalously low sensible heat fluxes (resulting in a positive anomaly of evaporative fraction) as well as positive anomalies in top-layer soil moisture. Over the ocean, uptakes were associated with positive anomalies in sea surface temperatures, the magnitude of which varies both regionally and seasonally. Major oceanic surface-based source regions of moisture for flash floods in the United States include the Gulf of Mexico and the Gulf of California, while boundary layer moisture increases in the southern plains are attributable in part to interactions between the land surface and the atmosphere.

     
    more » « less
  6. Abstract Long periods of extreme precipitation can cause costly damages to a region’s infrastructure while also creating a higher risk for the region’s population. Planning for these periods would ideally begin at the subseasonal-to-seasonal time scale, yet prediction of precipitation at this time scale has low skill. In this study, we will use Jennrich et al.’s database of 14-day extreme precipitation events to understand more about the synoptic connections and impacts of these extended extreme events. The synoptic connections of events were examined using the composites of event-day 500-hPa geopotential height and precipitable water anomalies. The combination of these two drivers leads to higher skill in the West Coast and Great Lakes than other regions, with an equitable threat score of 0.137 and 0.084, respectively, and higher conditional probabilities of event occurrence. Therefore, the synoptic patterns associated with events, although significant, are not unique, which poses prediction challenges. Historical impacts of these events, using NCEI storm reports, were assessed to benefit decision-makers in future risk mitigation. A variety of reports were found during events, from winter weather reports in West Coast events to tropical storm reports in Southeast events. Every region has significantly more flooding reports during events than in nonextreme 14-day periods, demonstrating the impacts of such extended events. Although there is still much to learn about extreme precipitation events, this study contributes to the foundational knowledge of synoptic drivers and impacts of events. 
    more » « less
  7. Abstract Heavy precipitation events and their associated flooding can have major impacts on communities and stakeholders. There is a lack of knowledge, however, about how stakeholders make decisions at the subseasonal-to-seasonal (S2S) time scales (i.e., 2 weeks to 3 months). To understand how decisions are made and S2S predictions are or can be used, the project team for “Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods” (PRES 2 iP) conducted a 2-day workshop in Norman, Oklahoma, during July 2018. The workshop engaged 21 professionals from environmental management and public safety communities across the contiguous United States in activities to understand their needs for S2S predictions of potential extended heavy precipitation events. Discussions and role-playing activities aimed to identify how workshop participants manage uncertainty and define extreme precipitation, the time scales over which they make key decisions, and the types of products they use currently. This collaboration with stakeholders has been an integral part of PRES 2 iP research and has aimed to foster actionable science. The PRES 2 iP team is using the information produced from this workshop to inform the development of predictive models for extended heavy precipitation events and to collaboratively design new forecast products with our stakeholders, empowering them to make more-informed decisions about potential extreme precipitation events. 
    more » « less
  8. Abstract Extreme precipitation across multiple time scales is a natural hazard that creates a significant risk to life, with a commensurately large cost through property loss. We devise a method to create 14-day extreme-event windows that characterize precipitation events in the contiguous United States (CONUS) for the years 1915–2018. Our algorithm imposes thresholds for both total precipitation and the duration of the precipitation to identify events with sufficient length to accentuate the synoptic and longer time scale contribution to the precipitation event. Kernel density estimation is employed to create extreme-event polygons that are formed into a database spanning from 1915 through 2018. Using the developed database, we clustered events into regions using a k -means algorithm. We define the “hybrid index,” a weighted composite of silhouette score and number of clustered events, to show that the optimal number of clusters is 15. We also show that 14-day extreme precipitation events are increasing in the CONUS, specifically in the Dakotas and much of New England. The algorithm presented in this work is designed to be sufficiently flexible to be extended to any desired number of days on the subseasonal-to-seasonal (S2S) time scale (e.g., 30 days). Additional databases generated using this framework are available for download from our GitHub. Consequently, these S2S databases can be analyzed in future works to determine the climatology of S2S extreme precipitation events and be used for predictability studies for identified events. 
    more » « less
  9. null (Ed.)
  10. Although significant improvements have been made to the prediction and understanding of extreme precipitation events in recent decades, there is still much to learn about these impactful events on the subseasonal time scale. This study focuses on identifying synoptic patterns and precursors ahead of an extreme precipitation event over the contiguous United States (CONUS). First, we provide a robust definition for 14-day “extreme precipitation events” and partition the CONUS into six different geographic regions to compare and contrast the synoptic patterns associated with events in those regions. Then, several atmospheric variables from ERA-Interim (e.g., geopotential height and zonal winds) are composited to understand the evolution of the atmospheric state before and during a 14-day extreme precipitation event. Common synoptic signals seen during events include significant zonally oriented trough–ridge patterns, an energized subtropical jet stream, and enhanced moisture transport into the affected area. Also, atmospheric-river activity increases in the specific region during these events. Modes of climate variability and lagged composites are then investigated for their potential use in lead-time prediction. Key findings include synoptic-scale anomalies in the North Pacific Ocean and regional connections to modes such as the Pacific–North American pattern and the North Pacific Oscillation. Taken together, our results represent a significant step forward in understanding the evolution of 14-day extreme precipitation events for potential damage and casualty mitigation. 
    more » « less