skip to main content


Title: Rivers in reverse: Upstream-migrating dechannelization and flooding cause avulsions on fluvial fans
Abstract The process of river avulsion builds floodplains and fills alluvial basins. We report on a new style of river avulsion identified in the Landsat satellite record. We found 69 examples of retrogradational avulsions on rivers of densely forested fluvial fans in the Andean and New Guinean alluvial basins. Retrogradational avulsions are initiated by a channel blockage, e.g., a logjam, that fills the channel with sediment and forces water overbank (dechannelization), which creates a chevron-shaped flooding pattern. Dechannelization waves travel upstream at a median rate of 387 m/yr and last on average for 13 yr; many rivers show multiple dechannelizing events on the same reach. Dechannelization ends and the avulsion is complete when the river finds a new flow path. We simulate upstream-migrating dechannelization with a one-dimensional morphodynamic model for open channel flow. Observations are consistent with model results and show that channel blockages can cause dechannelization on steep (10−2 to 10−3), low-discharge (~101 m3 s−1) rivers. This illustrates a new style of floodplain sedimentation that is unaccounted for in ecologic and stratigraphic models.  more » « less
Award ID(s):
1911321
NSF-PAR ID:
10342906
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
50
Issue:
1
ISSN:
0091-7613
Page Range / eLocation ID:
37 to 41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The rarely witnessed process of river avulsion repositions channels across floodplains, which influences floodplain geomorphology and stratigraphic architecture. The way avulsions redirect water and sediment is typically generalized into one of two styles. Avulsions proceeding through rapid channel switching and producing little to no floodplain disturbance are annexational, while those that involve sequential phases of crevassing, flooding, and eventual development of a new channel are progradational. We test the validity of these avulsion style categories by mapping and characterizing 14 avulsion events in Andean, Himalayan, and New Guinean foreland basins. We use Landsat data to identify how avulsions proceed and interpret the possible products of these processes in terms of geomorphic features and stratigraphy. We show that during annexation the avulsion channel widens, changes its meander wavelength and amplitude, or increases channel thread count. During progradation, avulsion channels are constructed from evolving distributary networks. Often beginning as crevasse splays, these networks migrate down the floodplain gradient and frequently create and fill ponds during the process. We also see evidence for a recently defined third avulsion style. Retrogradation involves overbank flow, like progradation, but is marked by an upstream-migrating abandonment and infilling of the parent channel. Avulsion belts in this study range from 5 to 60 km in length, and from 1 to 50 km in width. On average, these events demonstrate annexational style over 22.4% of their length. Eleven of 13 events either begin or end with annexation, and seven both begin and end with annexation. Only one event exhibited progradation over the entire avulsion-belt length. While there are many documented examples of purely annexational avulsions, we see little evidence for completely progradational or retrogradational avulsions, and instead suggest that a given avulsion is better envisioned as a series of spatiotemporal phases of annexation, progradation, and retrogradation. Such hybrid avulsions likely produce significantly greater stratigraphic variability than that predicted by the traditional end-member model. We suggest that a time-averaged, formation-scale consideration of avulsion products will yield more accurate characterizations of avulsion dynamics in ancient fluvial systems. 
    more » « less
  2. Abstract Fluvial fans are large, low-gradient depositional systems that occur in sedimentary basins worldwide. Fluvial fans can represent much of the geologic record of foreland basins, create hazards, and record paleoclimate and tectonic signals. However, we lack an understanding of how fluvial fans grow into the variety of shapes observed around the world. We explored this aspect using a cellular model of foreland basin landscape evolution with rules for sediment transport, river avulsion, and floodplain processes. We tested the hypothesis that avulsion dynamics, namely, avulsion trigger period and abandoned channel dynamics, are a primary control on fluvial fan development. We found that shorter trigger periods lead to rounder planform fluvial fan shapes because, between avulsions, channel aggradation (and thus avulsion setup) propagates shorter distances from the upstream boundary along channel pathways. This prioritizes lateral sediment dispersion, creating shorter, rounder fans, over sediment delivery further into the basin, which would create elongated fans. Modeled fans with abandoned channel attraction (but not repulsion) generated a commonly observed abrupt fan boundary marked by a transition from distributary to tributary channel patterns. While fluvial fans are thought to be linked to climate, they can occur anywhere that rivers aggrade, lose lateral confinement, and preserve alluvial topography. Instead, fluvial fans might be more recognizable in environments that frequently trigger avulsions and preserve abandoned channels that capture future avulsions. 
    more » « less
  3. Abstract

    Understanding channel migration is essential in interpreting long‐term evolution of fluvial systems and their deposits. Using data from an experimental delta, we analyzed the kinematics of the upstream channel and assessed the relative dominance of continuous lateral channel migration versus abrupt changes (i.e., avulsions). Detailed investigation of channel centerline location at minute intervals reveals a short‐term correlation between the magnitude of migration rates measured at the same location and a spatial correlation that diminishes with distance between points. The main finding is that the channel migrates across the entire deltaic domain without large and abrupt lateral shifts but through continuous lateral migration at variable rates. Long periods of back and forth small moves are separated by short bursts of rapid lateral migration. This finding contradicts the default expectation that that aggrading systems are characterized by avulsions and suggests that highly mobile rivers tend to avulse less. We contrast this with another experiment conducted under similar conditions but with finer sediment supplied at a lower rate which shows drastically less lateral migration; the kinematics is instead dominated by periodic flow reconfiguration episodes akin to avulsions, an indication that channel migration‐style depends on the sediment load. The characteristics of these two experiments parallel two regions of the Mississippi River, the meandering and highly mobile alluvial plain and the less dynamic deltaic region, suggesting that bedload sediment deposition at the transition into backwater zone plays an important role in re‐shaping the river planform and migration style.

     
    more » « less
  4. Abstract

    The size and geometry of river channels play a central role in sediment transport and the character of deposition within alluvial basins across spatiotemporal scales spanning the initiation of grain movement to the filling of accommodation generated by subsidence. This study compares several different approaches to estimating palaeoflow depths from fluvial deposits in the early Palaeogene Willwood Formation of north‐west Wyoming, USA. Fluvial story heights (n = 60) and mud plug thicknesses (n = 13) are statistically indistinguishable from one another and yield palaeoflow depth estimates of 4 to 6 m. The vertical relief on bar clinoforms (n = 112) yields smaller flow depths, by a factor ofca0.3, with the exception that the largest bar clinoforms match story heights and mud plug estimates. This observation is consistent with modern river data sets that indicate unit bar clinoforms do not capture the reach‐mean bank‐full flow depths except in rare circumstances. Future studies should use story heights (i.e. compound bar deposits) and mud plugs to estimate bank‐full flow depths in alluvial strata. Additionally, the thickness of multi‐storied fluvial sandbodies (n = 102) and overbank cycles composed of paired crevasse splay and palaeosol deposits (n = 45) were compared. The two depositional units display statistically indistinguishable mean and median values. Building upon previous depositional models, these observations suggest basin rivers aggraded approximately one flow depth prior to major avulsion. This avulsion process generated widespread crevasse splay deposition across the floodplain. Once the main river channel stem was reestablished, overbank flooding and palaeosol development dominated floodplain settings. The depositional model implies river aggradation autogenically generated topography in the basin that was effectively filled during the subsequent avulsion. This constitutes a meso‐timescale (103–104 years) compensational pattern driven by morphodynamics that may account for the high completeness of fossil and palaeoclimate records recovered from the basin.

     
    more » « less
  5. Abstract

    This study examines centennial‐scale hydrological and sedimentological effects of floodplain inundation by avulsion and its upstream and downstream controls. The 1870s avulsion in Cumberland Marshes diverted the Saskatchewan River flow towards Cumberland Lake, a local base level. It invaded a poorly drained sub‐basin of Cumberland Marshes floodplain linked to the parent Saskatchewan River by two small outlets in the resistant substrate. The rapid increase in inflow (~5× on average) during the earlier stages of the avulsion resulted in the base‐level rise and floodplain inundation by the avulsion lake. Since the early 20th century, the forced regression of the avulsion lake occurred, caused by ~5× outlet channel enlargement by ‘hungry‐water’ outflows, whereas the mean lake inflows experienced little change. The avulsion lake served as an effective sediment trap and was filled by predominantly progradational sandy and silty avulsion deposits up to 3–4 m thick, covering about 700 km2. Elsewhere, fluviodeltaic settings with ‘negative relief’ and limited hydrologic connectivity with the rest of the floodplain may be prone to avulsion lakes that form if the rates of inflow increased by avulsion exceed the rates of outflow. Avulsion lakes can last for ~100 years or more before they drain and/or become filled by overbank sediments. On well‐drained floodplains, inundations by avulsions are expected to be short‐term and result in little progradational deposition. This study demonstrates that in some local hydrographic basins, base level becomes a variable of an evolving avulsion rather than its fixed external control. Although avulsion‐induced base‐level changes are short‐lived, they affect 102–103 km2of a floodplain and occur rapidly, accompanied by high aggradation rates.

     
    more » « less