skip to main content

Title: Long Dark Gaps in the Lyβ Forest at z < 6: Evidence of Ultra-late Reionization from XQR-30 Spectra
Abstract We present a new investigation of the intergalactic medium near reionization using dark gaps in the Ly β forest. With its lower optical depth, Ly β offers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Ly α line. We identify dark gaps in the Ly β forest using spectra of 42 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10 h −1 Mpc at z ≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Ly α forest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches at z < 6 due to a late end to reionization. Of particular interest is a very long ( L = 28 h −1 Mpc) and dark ( τ eff ≳ 6) gap persisting down to z ≃ 5.5 in the Ly β forest of the z = 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral more » hydrogen fraction of 〈 x H I 〉 ≳ 5% by z = 5.6. Finally, we infer constraints on 〈 x H I 〉 over 5.5 ≲ z ≲ 6.0 based on the observed Ly β dark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈 x H I 〉 ≤ 0.05, 0.17, and 0.29 at z ≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later than z = 6. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Award ID(s):
1751404 1908284
Publication Date:
NSF-PAR ID:
10342957
Journal Name:
The Astrophysical Journal
Volume:
932
Issue:
2
Page Range or eLocation-ID:
76
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Ly α forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly α forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong ( L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30 , as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form ofmore »islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3.« less
  2. Abstract

    Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low (x¯HI103) or close to unity (x¯HI1). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints onx¯HIatz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits ofx¯more »mathvariant='normal'>HI(z=6.3)<0.79±0.04(1σ),x¯HI(z=6.5)<0.87±0.03(1σ), andx¯HI(z=6.7)<0.940.09+0.06(1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018.

    « less
  3. ABSTRACT

    We measure the mean free path ($\lambda _{\rm mfp,H\, \small {I}}$), photoionization rate ($\langle \Gamma _{\rm H\, \small {I}} \rangle$), and neutral fraction ($\langle f_{\rm H\, \small {I}} \rangle$) of hydrogen in 12 redshift bins at 4.85 < z < 6.05 from a large sample of moderate resolution XShooter and ESI QSO absorption spectra. The fluctuations in ionizing radiation field are modelled by post-processing simulations from the Sherwood suite using our new code ‘EXtended reionization based on the Code for Ionization and Temperature Evolution’ (ex-cite). ex-cite uses efficient Octree summation for computing intergalactic medium attenuation and can generate large number of high resolution $\Gamma _{\rm H\, \small {I}}$ fluctuation models. Our simulation with ex-cite shows remarkable agreement with simulations performed with the radiative transfer code Aton and can recover the simulated parameters within 1σ uncertainty. We measure the three parameters by forward-modelling the  Lyα forest and comparing the effective optical depth ($\tau _{\rm eff, H\, \small {I}}$) distribution in simulations and observations. The final uncertainties in our measured parameters account for the uncertainties due to thermal parameters, modelling parameters, observational systematics, and cosmic variance. Our best-fitting parameters show significant evolution with redshift such that $\lambda _{\rm mfp,H\, \small {I}}$more »and $\langle f_{\rm H\, \small {I}} \rangle$ decreases and increases by a factor ∼6 and ∼104, respectively from z ∼ 5 to z ∼ 6. By comparing our $\lambda _{\rm mfp,H\, \small {I}}$, $\langle \Gamma _{\rm H\, \small {I}} \rangle$ and $\langle f_{\rm H\, \small {I}} \rangle$ evolution with that in state-of-the-art Aton radiative transfer simulations and the Thesan and CoDa-III simulations, we find that our best-fitting parameter evolution is consistent with a model in which reionization completes by z ∼ 5.2. Our best-fitting model that matches the $\tau _{\rm eff, H\, \small {I}}$ distribution also reproduces the dark gap length distribution and transmission spike height distribution suggesting robustness and accuracy of our measured parameters.

    « less
  4. ABSTRACT The presence of excess scatter in the Ly-α forest at z ∼ 5.5, together with the existence of sporadic extended opaque Gunn-Peterson troughs, has started to provide robust evidence for a late end of hydrogen reionization. However, low data quality and systematic uncertainties complicate the use of Ly-α transmission as a precision probe of reionization’s end stages. In this paper, we assemble a sample of 67 quasar sightlines at z > 5.5 with high signal-to-noise ratios of >10 per ≤15 km s−1 spectral pixel, relying largely on the new XQR-30 quasar sample. XQR-30 is a large program on VLT/X-Shooter which obtained deep (SNR > 20 per pixel) spectra of 30 quasars at z > 5.7. We carefully account for systematics in continuum reconstruction, instrumentation, and contamination by damped Ly-α systems. We present improved measurements of the mean Ly-α transmission over 4.9 < z < 6.1. Using all known systematics in a forward modelling analysis, we find excellent agreement between the observed Ly-α transmission distributions and the homogeneous-UVB simulations Sherwood and Nyx up to z ≤ 5.2 (<1σ), and mild tension (∼2.5σ) at z = 5.3. Homogeneous UVB models are ruled out by excess Ly-α transmission scatter at z ≥ 5.4 with high confidencemore »(>3.5σ). Our results indicate that reionization-related fluctuations, whether in the UVB, residual neutral hydrogen fraction, and/or IGM temperature, persist in the intergalactic medium until at least z = 5.3 (t = 1.1 Gyr after the big bang). This is further evidence for a late end to reionization.« less
  5. ABSTRACT The reionization of hydrogen is closely linked to the first structures in the Universe, so understanding the timeline of reionization promises to shed light on the nature of these early objects. In particular, transmission of Lyman alpha (Ly α) from galaxies through the intergalactic medium (IGM) is sensitive to neutral hydrogen in the IGM, so can be used to probe the reionization timeline. In this work, we implement an improved model of the galaxy UV luminosity to dark matter halo mass relation to infer the volume-averaged fraction of neutral hydrogen in the IGM from Ly α observations. Many models assume that UV-bright galaxies are hosted by massive dark matter haloes in overdense regions of the IGM, so reside in relatively large ionized regions. However, observations and N-body simulations indicate that scatter in the UV luminosity–halo mass relation is expected. Here, we model the scatter (though we assume the IGM topology is unaffected) and assess the impact on Ly α visibility during reionization. We show that UV luminosity–halo mass scatter reduces Ly α visibility compared to models without scatter, and that this is most significant for UV-bright galaxies. We then use our model with scatter to infer the neutral fraction, $\overline{x}_{\mathrm{ H}\,{\small I}}$, atmore »z ∼ 7 using a sample of Lyman-break galaxies in legacy fields. We infer $\overline{x}_{\mathrm{ H}\,{\small I}} = 0.55_{-0.13}^{+0.11}$ with scatter, compared to $\overline{x}_{\mathrm{ H}\,{\small I}} = 0.59_{-0.14}^{+0.12}$ without scatter, a very slight decrease and consistent within the uncertainties. Finally, we place our results in the context of other constraints on the reionization timeline and discuss implications for future high-redshift galaxy studies.« less