skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microarchitectural Attacks in Heterogeneous Systems: A Survey
With the increasing proliferation of hardware accelerators and the predicted continued increase in the heterogeneity of future computing systems, it is necessary to understand the security properties of such systems. In this survey article, we consider the security of heterogeneous systems against microarchitectural attacks, with a focus on covert- and side-channel attacks, as well as fault injection attacks. We review works that have explored the vulnerability of the individual accelerators (such as Graphical Processing Units, GPUs and Field Programmable Gate Arrays, FPGAs) against these attacks, as well as efforts to mitigate them. We also consider the vulnerability of other components within a heterogeneous system such as the interconnect and memory components. We believe that this survey is especially timely, as new accelerators and heterogeneous systems are being designed such that these designs understand the security threats and develop systems that are not only performant but also secure.  more » « less
Award ID(s):
2130978 2053383
PAR ID:
10342982
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Computing Surveys
ISSN:
0360-0300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schmorrow, D.; Fidopiastis, C. (Ed.)
    As security measures to protect against cyberattacks increase, hackers have begun to target the weakest link in the cybersecurity chain–people. Such attacks are categorized as Social Engineering and rely on the manipulation and deception of people rather than technical security flaws [4]. This study attempts to examine the relationship between people and their vulnerability to Social Engineering attacks by posing the following questions: (1) what relationship, if any, exists between personality traits and Social Engineering vulnerability, and (2) what relationship, if any, exists between personality traits and the speed at which an individual makes cybersecurity-related decisions. To answer these questions, 79 undergraduate students at the University of Hawaii were surveyed to measure their personality traits and cybersecurity awareness. The survey results indicated that there was no significant correlation between the measured personality traits and measured vulnerability. The relationship between different personality traits and the elapsed time to complete the survey was slightly more significant; how-ever, it was still statistically insignificant overall. 
    more » « less
  2. Cloud computing has become crucial for the commercial world due to its computational capacity, storage capabilities, scalability, software integration, and billing convenience. Initially, clouds were relatively homogeneous, but now diverse machine configurations in heterogeneous clouds are recognized for their improved application performance and energy efficiency. This shift is driven by the integration of various hardware to accommodate diverse user applications. However, alongside these advancements, security threats like micro-architectural attacks are increasing concerns for cloud providers and users. Studies like Repttack and Cloak & Co-locate highlight the vulnerability of heterogeneous clouds to co-location attacks, where attacker and victim instances are placed together. The ease of these attacks isn’t solely linked to heterogeneity but also correlates with how heterogeneous the target systems are. Despite this, no numerical metrics exist to quantify cloud heterogeneity. This article introduces the Heterogeneity Score (HeteroScore) to evaluate server setups and instances. HeteroScore significantly correlates with co-location attack security. The article also proposes strategies to balance diversity and security. This study pioneers the quantitative analysis connecting cloud heterogeneity and infrastructure security. 
    more » « less
  3. Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today's IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today's IoT-based attacks. 
    more » « less
  4. Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today’s IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today’s IoT-based attacks. 
    more » « less
  5. With the rising adoption of deep neural networks (DNNs) for commercial and high-stakes applications that process sensitive user data and make critical decisions, security concerns are paramount. An adversary can undermine the confidentiality of user input or a DNN model, mislead a DNN to make wrong predictions, or even render a machine learning application unavailable to valid requests. While security vulnerabilities that enable such exploits can exist across multiple levels of the technology stack that supports machine learning applications, the hardware-level vulnerabilities can be particularly problematic. In this article, we provide a comprehensive review of the hardware-level vulnerabilities affecting domain-specific DNN inference accelerators and recent progress in secure hardware design to address these. As domain-specific DNN accelerators have a number of differences compared to general-purpose processors and cryptographic accelerators where the hardware-level vulnerabilities have been thoroughly investigated, there are unique challenges and opportunities for secure machine learning hardware. We first categorize the hardware-level vulnerabilities into three scenarios based on an adversary’s capability: 1) an adversary can only attack the off-chip components, such as the off-chip DRAM and the data bus; 2) an adversary can directly attack the on-chip structures in a DNN accelerator; and 3) an adversary can insert hardware trojans during the manufacturing and design process. For each category, we survey recent studies on attacks that pose practical security challenges to DNN accelerators. Then, we present recent advances in the defense solutions for DNN accelerators, addressing those security challenges with circuit-, architecture-, and algorithm-level techniques. 
    more » « less