skip to main content


Title: The Casimir effect in graphene systems: Experiment and theory
The Casimir effect in graphene systems is reviewed with a emphasis made on the large thermal correction to the Casimir force predicted at short separations between the test bodies. The computational results for the Casimir pressure and for the thermal correction are presented for both pristine graphene and real graphene sheets, which possess nonzero energy gap and chemical potential, obtained by means of exact polarization tensor. Two experiments on measuring the gradient of the Casimir force between an Au-coated sphere and graphene-coated substrates performed by using a modified atomic force microscope cantilever-based technique are described. It is shown that the measurement data of both experiments are in agreement with theoretical predictions of the Lifshitz theory using the polarization tensor. Additionally, several important improvements made in the second experiment, allowed to demonstrate the predicted large thermal effect in the Casimir interaction at short separations. Possible implications of this result to the resolution of long-term problems of Casimir physics are discussed.  more » « less
Award ID(s):
2012201
NSF-PAR ID:
10343019
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Modern Physics A
ISSN:
0217-751X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Casimir Effect is a physical manifestation of quantum fluctuations of the electromagnetic vacuum. When two metal plates are placed close together, typically much less than a micron, the long wavelength modes between them are frozen out, giving rise to a net attractive force between the plates, scaling as d−4 (or d−3 for a spherical-planar geometry) even when they are not electrically charged. In this paper, we observe the Casimir Effect in ambient conditions using a modified capacitive micro-electromechanical system (MEMS) sensor. Using a feedback-assisted pick-and-place assembly process, we are able to attach various microstructures onto the post-release MEMS, converting it from an inertial force sensor to a direct force measurement platform with pN (piconewton) resolution. With this system we are able to directly measure the Casimir force between a silver-coated microsphere and gold-coated silicon plate. This device is a step towards leveraging the Casimir Effect for cheap, sensitive, room temperature quantum metrology. 
    more » « less
  2. The Casimir Effect is a physical manifestation of quantum fluctuations of the electromagnetic vacuum. When two metal plates are placed close together, typically much less than a micron, the long wavelength modes between them are frozen out, giving rise to a net attractive force between the plates, scaling as d−4 (or d−3 for a spherical-planar geometry) even when they are not electrically charged. In this paper, we observe the Casimir Effect in ambient conditions using a modified capacitive micro-electromechanical system (MEMS) sensor. Using a feedback-assisted pick-and-place assembly process, we are able to attach various microstructures onto the post-release MEMS, converting it from an inertial force sensor to a direct force measurement platform with pN (piconewton) resolution. With this system we are able to directly measure the Casimir force between a silver-coated microsphere and gold-coated silicon plate. This device is a step towards leveraging the Casimir Effect for cheap, sensitive, room temperature quantum metrology. 
    more » « less
  3. Abstract

    In this article, we present a nanoelectromechanical system (NEMS) designed to detect changes in the Casimir energy. The Casimir effect is a result of the appearance of quantum fluctuations in an electromagnetic vacuum. Previous experiments have used nano- or microscale parallel plate capacitors to detect the Casimir force by measuring the small attractive force these fluctuations exert between the two surfaces. In this new set of experiments, we aim to directly detect the shifts in the Casimir energy in a vacuum due to the presence of the metallic parallel plates, one of which is a superconductor. A change in the Casimir energy of this configuration is predicted to shift the superconducting transition temperature (Tc) because of the interaction between it and the superconducting condensation energy. In our experiment, we take a superconducting film, carefully measure its transition temperature, bring a conducting plate close to the film, create a Casimir cavity, and then measure the transition temperature again. The expected shifts are smaller than the normal shifts one sees in cycling superconducting films to cryogenic temperatures, so using a NEMS resonator in situ is the only practical way to obtain accurate, reproducible data. Using a thin Pb film and opposing Au surface, we observe no shift inTc>12 µK down to a minimum spacing of ~70 nm at zero applied magnetic field.

     
    more » « less
  4. Conventional classical force fields by construction do not explicitly partition intermolecular interactions to include polarization and charge transfer effects, whereas fully quantum mechanical treatments allow a means to effect this dissection (although not uniquely due to the lack of a charge transfer operator). Considering the importance of polarization in a variety of systems, a particular class of classical models, charge equilibration models, have been extensively developed to study those systems; since these types of interaction models are inherently based on movement of charge throughout a system, they are natural platform for including polarization and charge transfer effects within the context of molecular simulations. Here, we present two bond‐space charge equilibration models we term as QE2 and mixed QE2 treat charge transfer in classical molecular mechanical calculations those provide practical solutions to two major drawbacks of charge equilibration models: (a) a nonvanishing amount of charge transfer between two heteroatoms at large separations, and (b) superlinear polarizability scaling during bond dissociation due to charge transfer over unphysical, large distances. To control charge transfer during dissociation of a bond in a molecular system, we introduce a distance‐dependent scaling function (QE2 model) which, controls and recovers physical behavior of the homonuclear and heteronuclear charge transfer between two atoms at small and large values of internuclear separation; and the mixed QE2 model in which we combine the QE2 model under allow and disallow charge transfer situations that describe both charge transfer and polarizability in a distance‐dependent manner. We demonstrate the utility of both models in the case of a water dimer, and compare the results with other existing models, and further, we perform short molecular dynamics simulations for few water clusters with the QE2 model to show the charge transfer and internuclear separation are correlated in dynamics. © 2017 Wiley Periodicals, Inc.

     
    more » « less
  5. Recent advances in measuring van der Waals (vdW) interactions have probed forces on molecules at nanometric separations from metal surfaces and demonstrated the importance of infrared nonlocal polarization response and temperature effects, yet predictive theories for these systems remain lacking. We present a theoretical framework for computing vdW interactions among molecular structures, accounting for geometry, short-range electronic delocalization, dissipation, and collective nuclear vibrations (phonons) at atomic scales, along with long-range electromagnetic interactions in arbitrary macroscopic environments. We primarily consider experimentally relevant low-dimensional carbon allotropes, including fullerenes, carbyne, and graphene, and find that phonons couple strongly with long-range electromagnetic fields depending on molecular dimensionality and dissipation, especially at nanometric scales, creating delocalized phonon polaritons that substantially modify infrared molecular response. These polaritons, in turn, alter vdW interaction energies between molecular and macroscopic structures, producing nonmonotonic power laws and nontrivial temperature variations at nanometric separations feasible in current experiments. 
    more » « less