skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Capacity Region of a Quantum Switch with Entanglement Purification
Quantum switches are envisioned to be an integral component of future entanglement distribution networks. They can provide high quality entanglement distribution service to end-users by performing quantum operations such as entanglement swapping and entanglement purification. In this work, we characterize the capacity region of such a quantum switch under noisy channel transmissions and imperfect quantum operations. We express the capacity region as a function of the channel and network parameters (link and entanglement swap success probability), entanglement purification yield and application level parameters (target fidelity threshold). In particular, we provide necessary conditions to verify if a set of request rates belong to the capacity region of the switch. We use these conditions to find the maximum achievable end-to-end user entanglement generation throughput by solving a set of linear optimization problems. We develop a max-weight scheduling policy and prove that the policy stabilizes the switch for all feasible request arrival rates. As we develop scheduling policies, we also generate new results for computing the conditional yield distribution of different classes of purification protocols. The conclusions obtained in this work can yield useful guidelines for subsequent quantum switch designs.  more » « less
Award ID(s):
1955744
PAR ID:
10562796
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-3414-2
Page Range / eLocation ID:
1 to 10
Subject(s) / Keyword(s):
Quantum Switch Capacity Region Entanglement Purification Max-weight Scheduling
Format(s):
Medium: X
Location:
New York City, NY, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Hemmer, Philip R.; Migdall, Alan L. (Ed.)
    We study a quantum switch that creates shared end-to-end entangled quantum states to multiple sets of users that are connected to it. Each user is connected to the switch via an optical link across which bipartite Bell-state entangled states are generated in each time-slot with certain probabilities, and the switch merges entanglements of links to create end-to-end entanglements for users. One qubit of an entanglement of a link is stored at the switch and the other qubit of the entanglement is stored at the user corresponding to the link. Assuming that qubits of entanglements of links decipher after one time-slot, we characterize the capacity region, which is defined as the set of arrival rates of requests for end-to-end entanglements for which there exists a scheduling policy that stabilizes the switch. We propose a Max-Weight scheduling policy and show that it stabilizes the switch for all arrival rates that lie in the capacity region. We also provide numerical results to support our analysis. 
    more » « less
  2. We study a quantum entanglement distribution switch serving a set of users in a star topology with equal-length links. The quantum switch, much like a quantum repeater, can perform entanglement swapping to extend entanglement across longer distances. Additionally, the switch is equipped with entanglement switching logic, enabling it to implement switching policies to better serve the needs of the network. In this work, the function of the switch is to create bipartite or tripartite entangled states among users at the highest possible rates at a fixed ratio. Using Markov chains, we model a set of randomized switching policies. Discovering that some are better than others, we present analytical results for the case where the switch stores one qubit per user, and find that the best policies outperform a time division multiplexing policy for sharing the switch between bipartite and tripartite state generation. This performance improvement decreases as the number of users grows. The model is easily augmented to study the capacity region in the presence of quantum state decoherence and associated cut-off times for qubit storage, obtaining similar results. Moreover, decoherence-associated quantum storage cut-off times appear to have little effect on capacity in our identical-link system. We also study a smaller class of policies when the switch stores two qubits per user. 
    more » « less
  3. Noise and photon loss encountered on quantum channels pose a major challenge for reliable entanglement generation in quantum networks. In near-term networks, heralding is required to inform endpoints of successfully generated entanglement. If after heralding, entanglement fidelity is too low, entanglement purification may be utilized to probabilistically increase fidelity. Traditionally, purification protocols proceed as follows: generate heralded EPR pairs, execute a series of quantum operations on two or more pairs between two nodes, and classically communicate results to check for success. Purification may require several rounds while qubits are stored in memories, vulnerable to decoherence. In this work, we explore notions of optimistic purification, wherein classical communication required for heralding and purification is delayed, possibly to the end of the process. Optimism reduces the overall time EPR pairs are stored in memory, increasing fidelity while possibly decreasing EPR pair rate due to decreased heralding and purification failure. We apply optimism to the entanglement pumping scheme, ground- and satellite-based EPR generation sources, and current state-of-the-art purification circuits that include several measurement and purification checkpoints. We evaluate performance in view of a number of parameters, including link length, EPR source rate and fidelity; and memory coherence time. We show that while our optimistic protocol increases fidelity, the traditional approach may even decrease fidelity for longer distances. We study the trade-off between rate and fidelity under entanglement-based QKD, and find that optimistic schemes can yield higher rates compared to non-optimistic counterparts, with most advantages seen in scenarios with low initial fidelity and short coherence times. 
    more » « less
  4. Quantum repeaters are necessary to fully realize the capabilities of the emerging quantum internet, especially applications involving distributing entanglement across long distances. A more general notion of this can be called a quantum switch, which connects to many users and can act as a repeater to create end-to-end entanglement between different subsets of these users. Here we present a method of calculating the capacity region of both discrete- and continuous-variable quantum switches that in general support mixed-partite entanglement generation. The method uses tools from convex analysis to generate the boundaries of the capacity region. We show example calculations with illustrative topologies and perform simulations to support the analytical results. 
    more » « less
  5. One fundamental goal of quantum networks is to provide node-to-node entanglement distribution. In this work, we develop a simulator, called A 2 Tango, for entanglement generation between two remote atom-ensemble nodes in a quantum network following Briegel, Dur, Cirac and Zoller (BDCZ) protocol. We encode quantum information to the two spatial modes of local atomic-ensemble spin waves and polarization states of single photons. The basic operations include atom-photon entanglement generation, quantum memory write-read operations, two-photon Bell-state measurement, and quantum state tomography. We model multi-photon events during the local excitation and propagation to account for their induced error in entanglement generation and distribution. We investigate the entanglement generation rate and fidelity as functions of the parameters which are realizable in experiments. Our work improves the open-sourced SeQUeNCe simulator and inspires the development of future quantum networks. 
    more » « less