skip to main content


Title: Optimal Entanglement Distribution using Satellite Based Quantum Networks
Recent technological advancements in satellite based quantum communication has made it a promising technology for realizing global scale quantum networks. Due to better loss distance scaling compared to ground based fiber communication, satellite quantum communication can distribute high quality quantum entanglements among ground stations that are geographically separated at very long distances. This work focuses on optimal distribution of bipartite entanglements to a set of pair of ground stations using a constellation of orbiting satellites. In particular, we characterize the optimal satellite-to-ground station transmission scheduling policy with respect to the aggregate entanglement distribution rate subject to various resource constraints at the satellites and ground stations. We cast the optimal transmission scheduling problem as an integer linear programming problem and solve it efficiently for some specific scenarios. Our framework can also be used as a benchmark tool to measure the performance of other potential transmission scheduling policies.  more » « less
Award ID(s):
1955744
NSF-PAR ID:
10343109
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. The latter prevents ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances. In this work, we propose a global-scale quantum internet consisting of a constellation of orbiting satellites that provides a continuous, on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution. We develop a technique for determining optimal satellite configurations with continuous coverage that balances both the total number of satellites and entanglement-distribution rates. Using this technique, we determine various optimal satellite configurations for a polar-orbit constellation, and we analyze the resulting satellite-to-ground loss and achievable entanglement-distribution rates for multiple ground station configurations. We also provide a comparison between these entanglement-distribution rates and the rates of ground-based quantum repeater schemes. Overall, our work provides the theoretical tools and the experimental guidance needed to make a satellite-based global quantum internet a reality.

     
    more » « less
  2. Earth observation Low Earth Orbit (LEO) satellites collect enormous amounts of data that needs to be transferred first to ground stations and then to the cloud, for storage and processing. Satellites today transmit data greedily to ground stations, with full utilization of bandwidth during each contact period. We show that due to the layout of ground stations and orbital characteristics, this approach overloads some ground stations and underloads others, leading to lost throughput and large end-to-end latency for images. We present a new end-to-end scheduler system called Umbra, which plans transfers from large satellite constellations through ground stations to the cloud, by accounting for both spatial and temporal factors, i.e., orbital dynamics, bandwidth constraints, and queue sizes. At the heart of Umbra is a new class of scheduling algorithms called withhold scheduling, wherein the sender (i.e., satellite) selectively under-utilizes some links to ground stations. We show that Umbra’s counter-intuitive approach increases throughput by 13-31% & reduces P90 latency by 3-6 X. 
    more » « less
  3. In this study, we investigate a context-aware status updating system consisting of multiple sensor-estimator pairs. A centralized monitor pulls status updates from multiple sensors that are monitoring several safety-critical situations (e.g., carbon monoxide density in forest fire detection, machine safety in industrial automation, and road safety). Based on the received sensor updates, multiple estimators determine the current safety-critical situations. Due to transmission errors and limited communication resources, the sensor updates may not be timely, resulting in the possibility of misunderstanding the current situation. In particular, if a dangerous situation is misinterpreted as safe, the safety risk is high. In this paper, we introduce a novel framework that quantifies the penalty due to the unawareness of a potentially dangerous situation. This situation-unaware penalty function depends on two key factors: the Age of Information (AoI) and the observed signal value. For optimal estimators, we provide an information-theoretic bound of the penalty function that evaluates the fundamental performance limit of the system. To minimize the penalty, we study a pull-based multi-sensor, multi-channel transmission scheduling problem. Our analysis reveals that for optimal estimators, it is always beneficial to keep the channels busy. Due to communication resource constraints, the scheduling problem can be modelled as a Restless Multi-armed Bandit (RMAB) problem. By utilizing relaxation and Lagrangian decomposition of the RMAB, we provide a low-complexity scheduling algorithm which is asymptotically optimal. Our results hold for both reliable and unreliable channels. Numerical evidence shows that our scheduling policy can achieve up to 100 times performance gain over periodic updating and up to 10 times over randomized policy. 
    more » « less
  4. LEO satellite networks possess highly dynamic topologies, with satellites moving at 27,000 km/hour to maintain their orbit. As satellites move, the characteristics of the satellite network routes change, triggering rerouting events. Frequent rerouting can cause poor performance for path-adaptive algorithms (e.g., congestion control). In this paper, we provide a thorough characterization of route variability in LEO satellite networks, focusing on route churn and RTT variability. We show that high route churn is common, with most paths used for less than half of their lifetime. With some paths used for just a few seconds. This churn is also unnecessary with rerouting leading to marginal gains in most cases (e.g., less than a 15% reduction in RTT). Moreover, we show that the high route churn is harmful to network utilization and congestion control performance. By examining RTT variability, we find that the smallest achievable RTT between two ground stations can increase by 2.5x as satellites move in their orbits. We show that the magnitude of RTT variability depends on the location of the communicating ground stations, exhibiting a spatial structure. Finally, we show that adding more satellites, and providing more routes between stations, does not necessarily reduce route variability. Rather, constellation configuration (i.e., the number of orbits and their inclination) plays a more significant role. We hope that the findings of this study will help with designing more robust routing algorithms for LEO satellite networks. 
    more » « less
  5. Abstract

    In this study, we utilized both ground‐based and space‐borne observations including total electron content (TEC) from Beidou geostationary satellites, two‐dimensional TEC maps from the worldwide dense Global Navigation Satellite System receivers, ionosondes, and in situ electron density (Ne) and electron temperature (Te) from both Swarm and China Seismo‐Electromagnetic Satellite satellites, to investigate the low‐latitude ionospheric responses to the annular solar eclipse on 21 June 2020. The decrease in TEC during the eclipse at low latitudes showed a local time dependence with the largest depletions in the noon and afternoon sectors. It was also found that the TEC depletions at different latitudes in the equatorial ionization anomaly (EIA) region over the East Asian sector cannot solely be explained by the solar flux changes associated with the obscuration rate. The differences in TEC reduction between stations can be more than a factor of 2 at latitudes with the same obscuration rate of over 90%. Compared with TEC variations in the Northern Hemisphere, the TEC also underwent a considerable decrease in the EIA region in the conjugate hemisphere without eclipse shadow. Meanwhile, thehmF2near the magnetic equator increased around the onset of the eclipse, indicating an enhancement of the eastward equatorial electric field. Furthermore, the TEC decrease during the eclipse in the EIA region in both hemispheres lasted for a long period of more than 7 hr after the eclipse, with a TEC depletion of 2–6 TEC units. TheNefrom Swarm and China Seismo‐Electromagnetic Satellite satellites showed a complicated variation after the eclipse, whereas no visible change was observed inTe. The enhanced equatorial electric field, neutral wind changes, and the associated plasma transport act together to generate the observed ionospheric effects at low latitudes during the eclipse. Our results also suggest that the eclipse‐induced perturbations of dynamic processes can continue to impact the ionosphere after the eclipse.

     
    more » « less