skip to main content


This content will become publicly available on October 30, 2024

Title: Context-aware Status Updating: Wireless Scheduling for Maximizing Situational Awareness in Safety-critical Systems
In this study, we investigate a context-aware status updating system consisting of multiple sensor-estimator pairs. A centralized monitor pulls status updates from multiple sensors that are monitoring several safety-critical situations (e.g., carbon monoxide density in forest fire detection, machine safety in industrial automation, and road safety). Based on the received sensor updates, multiple estimators determine the current safety-critical situations. Due to transmission errors and limited communication resources, the sensor updates may not be timely, resulting in the possibility of misunderstanding the current situation. In particular, if a dangerous situation is misinterpreted as safe, the safety risk is high. In this paper, we introduce a novel framework that quantifies the penalty due to the unawareness of a potentially dangerous situation. This situation-unaware penalty function depends on two key factors: the Age of Information (AoI) and the observed signal value. For optimal estimators, we provide an information-theoretic bound of the penalty function that evaluates the fundamental performance limit of the system. To minimize the penalty, we study a pull-based multi-sensor, multi-channel transmission scheduling problem. Our analysis reveals that for optimal estimators, it is always beneficial to keep the channels busy. Due to communication resource constraints, the scheduling problem can be modelled as a Restless Multi-armed Bandit (RMAB) problem. By utilizing relaxation and Lagrangian decomposition of the RMAB, we provide a low-complexity scheduling algorithm which is asymptotically optimal. Our results hold for both reliable and unreliable channels. Numerical evidence shows that our scheduling policy can achieve up to 100 times performance gain over periodic updating and up to 10 times over randomized policy.  more » « less
Award ID(s):
2239677
NSF-PAR ID:
10496002
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
194 to 200
Format(s):
Medium: X
Location:
Boston, MA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study a sampling and transmission scheduling problem for multi-source remote estimation, where a scheduler determines when to take samples from multiple continuous-time Gauss-Markov processes and send the samples over multiple channels to remote estimators. The sample transmission times are i.i.d. across samples and channels. The objective of the scheduler is to minimize the weighted sum of the time-average expected estimation errors of these Gauss-Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB) problem with a continuous state space. We prove that the bandits are indexable and derive an exact expression of the Whittle index. To the extent of our knowledge, this is the first Whittle index policy for multi-source signal-aware remote estimation of Gauss-Markov processes. We further investigate signal-agnostic remote estimation and develop a Whittle index policy for multi-source Age of Information (AoI) minimization over parallel channels with i.i.d. random transmission times. Our results unite two theoretical frameworks for remote estimation and AoI minimization: threshold-based sampling and Whittle index-based scheduling. In the single-source, single-channel scenario, we demonstrate that the optimal solution to the sampling and scheduling problem can be equivalently expressed as both a threshold-based sampling strategy and a Whittle index-based scheduling policy. Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i) the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the threshold-based sampling strategy. Moreover, the methodology employed to derive threshold-based sampling strategies in the single-source, single-channel scenario plays a crucial role in establishing indexability and evaluating the Whittle index in the more intricate multi-source, multi-channel scenario. Our numerical results show that the proposed policy achieves high performance gain over the existing policies when some of the Gauss-Markov processes are highly unstable. 
    more » « less
  2. null (Ed.)
    In this paper, we study the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel, where information can be transmitted at a high rate when the channel is in the "ON" state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission with the aim to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which in our setting poses some significant challenges because e.g., supermodularity does not hold for part of the state space. We show that there exists a multi-dimensional threshold-based scheduling policy that is optimal for minimizing the age. A low-complexity bisection algorithm is further devised to compute the optimal thresholds. Numerical simulations are provided to compare different scheduling policies. 
    more » « less
  3. In this paper, we consider a remote inference system, where a neural network is used to infer a time-varying target (e.g., robot movement), based on features (e.g., video clips) that are progressively received from a sensing node (e.g., a camera). Each feature is a temporal sequence of sensory data. The inference error is determined by (i) the timeliness and (ii) the sequence length of the feature, where we use Age of Information (AoI) as a metric for timeliness. While a longer feature can typically provide better inference performance, it often requires more channel resources for sending the feature. To minimize the time-averaged inference error, we study a learning and communication co-design problem that jointly optimizes feature length selection and transmission scheduling. When there is a single sensor-predictor pair and a single channel, we develop low-complexity optimal co-designs for both the cases of time-invariant and time-variant feature length. When there are multiple sensor-predictor pairs and multiple channels, the co-design problem becomes a restless multi-arm multi-action bandit problem that is PSPACE-hard. For this setting, we design a low-complexity algorithm to solve the problem. Trace-driven evaluations demonstrate the potential of these co-designs to reduce inference error by up to 10000 times. 
    more » « less
  4. In this paper, we study an age of information minimization problem in continuous-time and discrete-time status updating systems that involve multiple packet flows, multiple servers, and transmission errors. Four scheduling policies are proposed. We develop a unifying sample-path approach and use it to show that, when the packet generation and arrival times are synchronized across the flows, the proposed policies are (near) optimal for minimizing any time-dependent, symmetric, and non-decreasing penalty function of the ages of the flows over time in a stochastic ordering sense. 
    more » « less
  5. null (Ed.)
    This paper studies a remote sensing system where multiple wireless sensors generate possibly noisy information updates of various surveillance fields and delivering these updates to a control center over a wireless network. The control center needs a sufficient number of recently generated information updates to have an accurate estimate of the current system status, which is critical for the control center to make appropriate control decisions. The goal of this work is then to design the optimal policy for scheduling the transmissions of information updates. Through Brownian approximation, we demonstrate that the control center’s ability to make accurate real-time estimates depends on the averages and temporal variances of the delivery processes. We then formulate a constrained optimization problem to find the optimal means and variances. We also develop a simple online scheduling policy that employs the optimal means and variances to achieve the optimal system-wide performance. Simulation results show that our scheduling policy enjoys fast convergence speed and better performance when compared to other state-of-the-art policies. 
    more » « less