skip to main content


Title: Effect of ultrasound amplitude and frequency on nanoparticle diffusion in an agarose hydrogel
Exposure of nanoparticles in a porous medium, such as a hydrogel, to low-intensity ultrasound has been observed to dramatically enhance particle penetration rate. Enhancement of nanoparticle penetration is a key issue affecting applications such as biofilm mitigation and targeted drug delivery in human tissue. The current study used fluorescent imaging to obtain detailed experimental measurements of the effect of ultrasound amplitude and frequency on diffusion of nanoparticles of different diameters in an agarose hydrogel, which is often used as a simulant for biofilms and biological tissues. We demonstrate that the acoustic enhancement occurs via the phenomenon of oscillatory diffusion, in which a combination of an oscillatory flow together with random hindering of the particles by interaction with hydrogel proteins induces a stochastic random walk of the particles. The measured variation of acoustic diffusion coefficients with amplitude and frequency were used to validate a previous statistical theory of oscillatory diffusion based on the continuous time random walk approach.  more » « less
Award ID(s):
1926197
NSF-PAR ID:
10343117
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
152
Issue:
1
ISSN:
0001-4966
Page Range / eLocation ID:
640 to 650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural anisotropy, often observed in naturally occurring materials such as wood and human tissues, is central to the function in several engineered and non-engineered applications. In this study, we present the theory and proof-of-concept demonstration of an ultrasound-assisted non-contact manufacturing approach to create well-defined spatial patterns of micro-particles within a fluid matrix. A chamber with opposing pair of ultrasonic transducers was designed and prototyped based on standing bulk acoustic wave theory, and it was used to study the effects of ultrasound frequency (1, 1.5, 2, 3 MHz) and voltage amplitude (80, 160 mVpp) on alignment characteristics of polymer micro-particles (mean Ø = 8 μm) suspended in water (0.01 g/ml). The experimental results were consistent with theory in that the micro-particles aligned along linear strands, with the inter-strand spacing reducing with increasing frequency (p < 0.05). Increasing voltage amplitude reduced the time taken to align the particles, but it did not significantly change the observed spacing (p > 0.05). The observed spacing, however, was higher than the theoretical spacing of half-wavelength, for each frequency and amplitude. The alignment of living human adipose derived stem cells in viscous alginate hydrogel matrix was also successfully demonstrated. The approach presented herein can be scaled up into manufacturing processes, including layered manufacturing, to create highly functional mechanically and/or electrically anisotropic composites through controlled spatial geometry, as well as to biofabricate engineered tissues with aligned cells and extracellular matrix components to mimic natural tissues. 
    more » « less
  2. Hydrogels have emerged as a crucial class of materials within the field of tissue engineering. There is growing interest in matching the mechanical properties of hydrogel scaffolds to tissues in the human body and optimizing these properties for cell growth and differentiation. Gelatin methacrylate (GelMA) is a well-accepted, biocompatible hydrogel with tunable mechanical properties. However, the effects of various formulation parameters on its mechanical properties are not well understood. In this study, an array of GelMA scaffold fabrication parameters is evaluated by varying GelMA concentration and ultraviolet light exposure time. Our overarching goal is to characterize the mechanical properties through ultrasound and rheological measurements, providing a framework for GelMA scaffold selection. Pulse-echo ultrasound techniques were used to non-invasively determine the sound speed and attenuation of the scaffolds, revealing significant dependence on GelMA concentration. Steady shear rate and strain- and frequency-controlled oscillatory shear tests using a rotational rheometer (Model: DHR-2, TA Instruments) revealed a range in the levels of shear-thinning as well as viscoelasticity and showed moduli-dependence on both GelMA concentration and light exposure time. Together, this acoustic and rheological characterization can be used to inform the selection of GelMA scaffolds in tissue engineering applications. 
    more » « less
  3. In this work, we present a proof-of-concept hydrogel-based sensor system capable of wireless biochemical sensing through measuring backscattered ultrasound. The system consists of silica-nanoparticle embedded hydrogel deposited on a thin glass substrate, presenting two interfaces for backscattering (tissue/hydrogel and hydrogel/glass), which allows for system output to be invariant under the change in acoustic properties (e.g. attenuation, reflection) of the intervening biological tissue. We characterize the effect of silica nanoparticles (acoustic contrast agents) loading on the hydrogel's swelling ratio and its ultrasonic backscattering properties. We demonstrate a wireless pH measurement using dual modes of interrogations, reflection ratio and time delay. The ultrasonic hydrogel pH sensor is demonstrated with a sensing resolution of 0.2 pH level change with a wireless sensing distance around 10 cm. 
    more » « less
  4. Understanding the orientation dynamics of anisotropic colloidal particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in shear flow, the orientation dynamics of non-spherical Brownian particles are poorly understood. Here we analytically calculate the time-dependent orientation distributions for non-spherical axisymmetric particles confined to rotate in the flow–gradient plane, in the limit of small but non-zero Brownian diffusivity. For continuous shear, despite the complicated dynamics arising from the particle rotations, we find a coordinate change that maps the orientation dynamics to a diffusion equation with a remarkably simple ratio of the enhanced rotary diffusivity to the zero shear diffusion: $D_{eff}^{r}/D_{0}^{r}=(3/8)(p-1/p)^{2}+1$ , where $p$ is the particle aspect ratio. For oscillatory shear, the enhanced diffusion becomes orientation dependent and drastically alters the long-time orientation distributions. We describe a general method for solving the time-dependent oscillatory shear distributions and finding the effective diffusion constant. As an illustration, we use this method to solve for the diffusion and distributions in the case of triangle-wave oscillatory shear and find that they depend strongly on the strain amplitude and particle aspect ratio. These results provide new insight into the time-dependent rheology of suspensions of anisotropic particles. For continuous shear, we find two distinct diffusive time scales in the rheology that scale separately with aspect ratio $p$ , as $1/D_{0}^{r}p^{4}$ and as $1/D_{0}^{r}p^{2}$ for $p\gg 1$ . For oscillatory shear flows, the intrinsic viscosity oscillates with the strain amplitude. Finally, we show the relevance of our results to real suspensions in which particles can rotate freely. Collectively, the interplay between shear-induced rotations and diffusion has rich structure and strong effects: for a particle with aspect ratio 10, the oscillatory shear intrinsic viscosity varies by a factor of ${\approx}2$ and the rotational diffusion by a factor of ${\approx}40$ . 
    more » « less
  5. Volumetric printing, an emerging additive manufacturing technique, builds objects with enhanced printing speed and surface quality by forgoing the stepwise ink-renewal step. Existing volumetric printing techniques almost exclusively rely on light energy to trigger photopolymerization in transparent inks, limiting material choices and build sizes. We report a self-enhancing sonicated ink (or sono-ink) design and corresponding focused-ultrasound writing technique for deep-penetration acoustic volumetric printing (DAVP). We used experiments and acoustic modeling to study the frequency and scanning rate–dependent acoustic printing behaviors. DAVP achieves the key features of low acoustic streaming, rapid sonothermal polymerization, and large printing depth, enabling the printing of volumetric hydrogels and nanocomposites with various shapes regardless of their optical properties. DAVP also allows printing at centimeter depths through biological tissues, paving the way toward minimally invasive medicine.

     
    more » « less