skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Splash in a flash: sharpness-aware minimization for efficient liquid splash simulation
We present sharpness-aware minimization (SAM) for fluid dynamics which can efficiently learn the plausible dynamics of liquid splashes. Due to its ability to achieve robust and generalizing solutions, SAM efficiently converges to a parameter set that predicts plausible dynamics of elusive liquid splashes. Our training scheme requires 6 times smaller number of epochs to converge and, 4 times shorter wall-clock time. Our result shows that sharpness of loss function has a close connection to the plausibility of fluid dynamics and suggests further applicability of SAM to machine learning based fluid simulation.  more » « less
Award ID(s):
2118061
PAR ID:
10343118
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Conference of the European Association for Computer Graphics, Eurographics
Page Range / eLocation ID:
1003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks are often overparameterized and may not easily achieve model generalization. Adversarial training has shown effectiveness in improving generalization by regularizing the change of loss on top of adversarially chosen perturbations. The recently proposed sharpness-aware minimization (SAM) algorithm conducts adversarial weight perturbation, encouraging the model to converge to a flat minima. SAM finds a common adversarial weight perturbation per-batch. Although per-instance adversarial weight perturbations are stronger adversaries and can potentially lead to better generalization performance, their computational cost is very high and thus it is impossible to use per-instance perturbations efficiently in SAM. In this paper, we tackle this efficiency bottleneck and propose sharpness-aware minimization with dynamic reweighting (delta-SAM). Our theoretical analysis motivates that it is possible to approach the stronger, per-instance adversarial weight perturbations using reweighted per-batch weight perturbations. delta-SAM dynamically reweights perturbation within each batch according to the theoretically principled weighting factors, serving as a good approximation to per-instance perturbation. Experiments on various natural language understanding tasks demonstrate the effectiveness of delta-SAM. 
    more » « less
  2. The capacity to generalize to future unseen data stands as one of the utmost crucial attributes of deep neural networks. Sharpness-Aware Minimization (SAM) aims to enhance the generalizability by minimizing worst-case loss using one-step gradient ascent as an approximation. However, as training progresses, the non-linearity of the loss landscape increases, rendering one-step gradient ascent less effective. On the other hand, multi-step gradient ascent will incur higher training cost. In this paper, we introduce a normalized Hessian trace to accurately measure the curvature of loss landscape on both training and test sets. In particular, to counter excessive non-linearity of loss landscape, we propose Curvature Regularized SAM (CR-SAM), integrating the normalized Hessian trace as a SAM regularizer. Additionally, we present an efficient way to compute the trace via finite differences with parallelism. Our theoretical analysis based on PAC-Bayes bounds establishes the regularizer's efficacy in reducing generalization error. Empirical evaluation on CIFAR and ImageNet datasets shows that CR-SAM consistently enhances classification performance for ResNet and Vision Transformer (ViT) models across various datasets. Our code is available at https://github.com/TrustAIoT/CR-SAM. 
    more » « less
  3. Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces. 
    more » « less
  4. In this paper, a Segment Anything Model (SAM)-based pedestrian infrastructure segmentation workflow is designed and optimized, which is capable of efficiently processing multi-sourced geospatial data, including LiDAR data and satellite imagery data. We used an expanded definition of pedestrian infrastructure inventory, which goes beyond the traditional transportation elements to include street furniture objects that are important for accessibility but are often omitted from the traditional definition. Our contributions lie in producing the necessary knowledge to answer the following three questions. First, how can mobile LiDAR technology be leveraged to produce comprehensive pedestrian-accessible infrastructure inventory? Second, which data representation can facilitate zero-shot segmentation of infrastructure objects with SAM? Third, how well does the SAM-based method perform on segmenting pedestrian infrastructure objects? Our proposed method is designed to efficiently create pedestrian-accessible infrastructure inventory through the zero-shot segmentation of multi-sourced geospatial datasets. Through addressing three research questions, we show how the multi-mode data should be prepared, what data representation works best for what asset features, and how SAM performs on these data presentations. Our findings indicate that street-view images generated from mobile LiDAR point-cloud data, when paired with satellite imagery data, can work efficiently with SAM to create a scalable pedestrian infrastructure inventory approach with immediate benefits to GIS professionals, city managers, transportation owners, and walkers, especially those with travel-limiting disabilities, such as individuals who are blind, have low vision, or experience mobility disabilities. 
    more » « less
  5. Recently, researchers observed that gradient descent for deep neural networks operates in an “edge-of-stability” (EoS) regime: the sharpness (maximum eigenvalue of the Hessian) is often larger than stability threshold 2/\eta (where \eta is the step size). Despite this, the loss oscillates and converges in the long run, and the sharpness at the end is just slightly below 2/\eta . While many other well-understood nonconvex objectives such as matrix factorization or two-layer networks can also converge despite large sharpness, there is often a larger gap between sharpness of the endpoint and 2/\eta . In this paper, we study EoS phenomenon by constructing a simple function that has the same behavior. We give rigorous analysis for its training dynamics in a large local region and explain why the fnal converging point has sharpness close to 2/\eta . Globally we observe that the training dynamics for our example have an interesting bifurcating behavior, which was also observed in the training of neural nets. 
    more » « less