Abstract The water snowline location in protostellar envelopes provides crucial information about the thermal structure and the mass accretion process as it can inform about the occurrence of recent (≲1000 yr) accretion bursts. In addition, the ability to image water emission makes these sources excellent laboratories to test indirect snowline tracers such as H 13 CO + . We study the water snowline in five protostellar envelopes in Perseus using a suite of molecular-line observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) at ∼0.″2−0.″7 (60–210 au) resolution. B1-c provides a textbook example of compact H 2 18 O (3 1,3 −2 2,0 ) and HDO (3 1,2 −2 2,1 ) emission surrounded by a ring of H 13 CO + ( J = 2−1) and HC 18 O + ( J = 3−2). Compact HDO surrounded by H 13 CO + is also detected toward B1-bS. The optically thick main isotopologue HCO + is not suited to trace the snowline, and HC 18 O + is a better tracer than H 13 CO + due to a lower contribution from the outer envelope. However, because a detailed analysis is needed to derive a snowline location from H 13 CO + or HC 18 O + emission, their true value as a snowline tracer will lie in the application in sources where water cannot be readily detected. For protostellar envelopes, the most straightforward way to locate the water snowline is through observations of H 2 18 O or HDO. Including all subarcsecond-resolution water observations from the literature, we derive an average burst interval of ∼10,000 yr, but high-resolution water observations of a larger number of protostars are required to better constrain the burst frequency.
more »
« less
The Young Embedded Disk L1527 IRS: Constraints on the Water Snowline and Cosmic-Ray Ionization Rate from HCO+ Observations
Abstract The water snowline in circumstellar disks is a crucial component in planet formation, but direct observational constraints on its location remain sparse owing to the difficulty of observing water in both young embedded and mature protoplanetary disks. Chemical imaging provides an alternative route to locate the snowline, and HCO + isotopologues have been shown to be good tracers in protostellar envelopes and Herbig disks. Here we present ∼0.″5 resolution (∼35 au radius) Atacama Large Millimeter/submillimeter Array (ALMA) observations of HCO + J = 4 − 3 and H 13 CO + J = 3 − 2 toward the young (Class 0/I) disk L1527 IRS. Using a source-specific physical model with the midplane snowline at 3.4 au and a small chemical network, we are able to reproduce the HCO + and H 13 CO + emission, but for HCO + only when the cosmic-ray ionization rate is lowered to 10 −18 s −1 . Even though the observations are not sensitive to the expected HCO + abundance drop across the snowline, the reduction in HCO + above the snow surface and the global temperature structure allow us to constrain a snowline location between 1.8 and 4.1 au. Deep observations are required to eliminate the envelope contribution to the emission and to derive more stringent constraints on the snowline location. Locating the snowline in young disks directly with observations of H 2 O isotopologues may therefore still be an alternative option. With a direct snowline measurement, HCO + will be able to provide constraints on the ionization rate.
more »
« less
- Award ID(s):
- 1814762
- PAR ID:
- 10343162
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 932
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Studying the physical and chemical conditions of young embedded disks is crucial to constrain the initial conditions for planet formation. Here we present Atacama Large Millimeter/submillimeter Array observations of dust continuum at ∼0.″06 (8 au) resolution and molecular line emission at ∼0.″17 (24 au) resolution toward the Class 0 protostar L1527 IRS from the Large Program eDisk (Early Planet Formation in Embedded Disks). The continuum emission is smooth without substructures but asymmetric along both the major and minor axes of the disk as previously observed. The detected lines of12CO,13CO, C18O, H2CO, c-C3H2, SO, SiO, and DCN trace different components of the protostellar system, with a disk wind potentially visible in12CO. The13CO brightness temperature and the H2CO line ratio confirm that the disk is too warm for CO freezeout, with the snowline located at ∼350 au in the envelope. Both molecules show potential evidence of a temperature increase around the disk–envelope interface. SO seems to originate predominantly in UV-irradiated regions such as the disk surface and the outflow cavity walls rather than at the disk–envelope interface as previously suggested. Finally, the continuum asymmetry along the minor axis is consistent with the inclination derived from the large-scale (100″ or 14,000 au) outflow, but opposite to that based on the molecular jet and envelope emission, suggesting a misalignment in the system. Overall, these results highlight the importance of observing multiple molecular species in multiple transitions to characterize the physical and chemical environment of young disks.more » « less
-
Abstract High-spatial-resolution observations of CO isotopologue line emission in protoplanetary disks at mid-inclinations (≈30°–75°) allow us to characterize the gas structure in detail, including radial and vertical substructures, emission surface heights and their dependencies on source characteristics, and disk temperature profiles. By combining observations of a suite of CO isotopologues, we can map the two-dimensional (r,z) disk structure from the disk upper atmosphere, as traced by CO, to near the midplane, as probed by less abundant isotopologues. Here, we present high-angular-resolution (≲0.″1 to ≈0.″2; ≈15–30 au) observations of CO,13CO, and C18O in either or bothJ= 2–1 andJ= 3–2 lines in the transition disks around DM Tau, Sz 91, LkCa 15, and HD 34282. We derived line emission surfaces in CO for all disks and in13CO for the DM Tau and LkCa 15 disks. With these observations, we do not resolve the vertical structure of C18O in any disk, which is instead consistent with C18O emission originating from the midplane. Both theJ= 2–1 andJ= 3–2 lines show similar heights. Using the derived emission surfaces, we computed radial and vertical gas temperature distributions for each disk, including empirical temperature models for the DM Tau and LkCa 15 disks. After combining our sample with literature sources, we find that13CO line emitting heights are also tentatively linked with source characteristics, e.g., stellar host mass, gas temperature, disk size, and show steeper trends than seen in CO emission surfaces.more » « less
-
Abstract Ionization drives important chemical and dynamical processes within protoplanetary disks, including the formation of organics and water in the cold midplane and the transportation of material via accretion and magnetohydrodynamic flows. Understanding these ionization-driven processes is crucial for understanding disk evolution and planet formation. We use new and archival Atacama Large Millimeter/submillimeter Array observations of HCO+, H13CO+, and N2H+to produce the first forward-modeled 2D ionization constraints for the DM Tau protoplanetary disk. We include ionization from multiple sources and explore the disk chemistry under a range of ionizing conditions. Abundances from our 2D chemical models are postprocessed using non-LTE radiative transfer, visibility sampling, and imaging, and are compared directly to the observed radial emission profiles. The observations are best fit by a modestly reduced cosmic-ray ionization rate (ζCR∼10−18s−1) and a hard X-ray spectrum (hardness ratio = 0.3), which we associate with stellar flaring conditions. Our best-fit model underproduces emission in the inner disk, suggesting that there may be an additional mechanism enhancing ionization in DM Tau’s inner disk. Overall, our findings highlight the complexity of ionization in protoplanetary disks and the need for high-resolution multiline studies.more » « less
-
null (Ed.)Context. Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. Recent studies allude to an early start to planet formation already during the formation of a disk. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. Aims. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. Methods. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, HCO + , HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in local thermodynamical equilibrium (LTE) as well as through more detailed non-LTE radiative transfer calculations. Results. Resolved dust continuum emission from the disk is detected between 220 and 260 GHz. Rotational transitions from HCO + , HCN, and SO are also detected from the inner 100 au region. We further report on upper limits to vibrational HCN υ 2 = 1, DCN, and N 2 D + lines. The HCO + emission appears to trace both the Keplerian disk and the surrounding infalling rotating envelope. HCN emission peaks toward the outflow cavity region connected with the CO disk wind and toward the red-shifted part of the Keplerian disk. From the derived HCO + abundance, we estimate the ionization fraction of the disk surface, and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disk’s molecular abundances relative to Solar System objects. Conclusions. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and H 2 O molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.more » « less
An official website of the United States government

