skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1814762

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The majority of binary star systems that host exoplanets will spend the first portion of their lives within a star-forming cluster that may drive dynamical evolution of the binary-planet system. We perform numerical simulations of S-type planets, with masses and orbital architecture analogous to the Solar system’s four gas giants, orbiting within the influence of a $0.5\, \mathrm{M}_{\odot }$ binary companion. The binary-planet system is integrated simultaneously with an embedded stellar cluster environment. ∼10 per cent of our planetary systems are destabilized when perturbations from our cluster environment drive the binary periastron towards the planets. This destabilization occurs despite all of our systems being initialized with binary orbits that would allow stable planets in the absence of the cluster. The planet–planet scattering triggered in our systems typically results in the loss of lower mass planets and the excitement of the eccentricities of surviving higher mass planets. Many of our planetary systems that go unstable also lose their binary companions prior to cluster dispersal and can therefore masquerade as hosts of eccentric exoplanets that have spent their entire histories as isolated stars. The cluster-driven binary orbital evolution in our simulations can also generate planetary systems with misaligned spin–orbit angles. This is typically done as the planetary system precesses as a rigid disc under the influence of an inclined binary, and those systems with the highest spin–orbit angles should often retain their binary companion and possess multiple surviving planets.

     
    more » « less
  2. Abstract

    We present Very Large Array observations toward the Class 0 protostar L1157 MMS at 6.8 and 9 mm with a resolution of ∼0.″04 (14 au). We detect two sources within L1157 MMS and interpret these sources as a binary protostar with a separation of ∼16 au. The material directly surrounding the binary system within the inner 50 au radius of the system has an estimated mass of 0.11M, calculated from the observed dust emission. We interpret the observed binary system in the context of previous observations of its flattened envelope structure, low rates of envelope rotation from 5000 to 200 au scales, and an ordered, poloidal magnetic field aligned with the outflow. Thus, L1157 MMS is a prototype system for magnetically regulated collapse, and the presence of a compact binary within L1157 MMS demonstrates that multiple star formation can still occur within envelopes that likely have dynamically important magnetic fields.

     
    more » « less
  3. Abstract

    We characterize protostellar multiplicity in

    Current address: Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5–7, DK-1350, Copenhagen K, Denmark.

    the Orion molecular clouds using Atacama Large Millimeter/submillimeter Array 0.87 mm and Very Large Array 9 mm continuum surveys toward 328 protostars. These observations are sensitive to projected spatial separations as small as ∼20 au, and we consider source separations up to 104au as potential companions. The overall multiplicity fraction (MF) and companion fraction (CF) for the Orion protostars are 0.30 ± 0.03 and 0.44 ± 0.03, respectively, considering separations from 20 to 104au. The MFs and CFs are corrected for potential contamination by unassociated young stars using a probabilistic scheme based on the surface density of young stars around each protostar. The companion separation distribution as a whole is double peaked and inconsistent with the separation distribution of solar-type field stars, while the separation distribution of Flat Spectrum protostars is consistent solar-type field stars. The multiplicity statistics and companion separation distributions of the Perseus star-forming region are consistent with those of Orion. Based on the observed peaks in the Class 0 separations at ∼100 au and ∼103au, we argue that multiples with separations <500 au are likely produced by both disk fragmentation and turbulent fragmentation with migration, and those at ≳103au result primarily from turbulent fragmentation. We also find that MFs/CFs may rise from Class 0 to Flat Spectrum protostars between 100 and 103au in regions of high young stellar object density. This finding may be evidence for the migration of companions from >103au to <103au, and that some companions between 103and 104au must be (or become) unbound.

     
    more » « less
  4. Abstract The water snowline in circumstellar disks is a crucial component in planet formation, but direct observational constraints on its location remain sparse owing to the difficulty of observing water in both young embedded and mature protoplanetary disks. Chemical imaging provides an alternative route to locate the snowline, and HCO + isotopologues have been shown to be good tracers in protostellar envelopes and Herbig disks. Here we present ∼0.″5 resolution (∼35 au radius) Atacama Large Millimeter/submillimeter Array (ALMA) observations of HCO + J = 4 − 3 and H 13 CO + J = 3 − 2 toward the young (Class 0/I) disk L1527 IRS. Using a source-specific physical model with the midplane snowline at 3.4 au and a small chemical network, we are able to reproduce the HCO + and H 13 CO + emission, but for HCO + only when the cosmic-ray ionization rate is lowered to 10 −18 s −1 . Even though the observations are not sensitive to the expected HCO + abundance drop across the snowline, the reduction in HCO + above the snow surface and the global temperature structure allow us to constrain a snowline location between 1.8 and 4.1 au. Deep observations are required to eliminate the envelope contribution to the emission and to derive more stringent constraints on the snowline location. Locating the snowline in young disks directly with observations of H 2 O isotopologues may therefore still be an alternative option. With a direct snowline measurement, HCO + will be able to provide constraints on the ionization rate. 
    more » « less
  5. Abstract Observed changes in protostellar brightness can be complicated to interpret. In our James Clerk Maxwell Telescope (JCMT) Transient Monitoring Survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest 30% brightness increase at 850 μ m, caused by a factor of 1.8–3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then a shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-IR and NEOWISE W1 and W2 emission is located along the blueshifted CO outflow, spatially offset by ∼3 to 4″ from the SW component. The K -band emission imaged by UKIRT shows a compact H 2 emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The W1 emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the submillimeter light curve. The signal of continuum variability in K band and W2 is masked by stable H 2 emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate IR searches for variability of the youngest protostars. 
    more » « less
  6. Abstract The water snowline location in protostellar envelopes provides crucial information about the thermal structure and the mass accretion process as it can inform about the occurrence of recent (≲1000 yr) accretion bursts. In addition, the ability to image water emission makes these sources excellent laboratories to test indirect snowline tracers such as H 13 CO + . We study the water snowline in five protostellar envelopes in Perseus using a suite of molecular-line observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) at ∼0.″2−0.″7 (60–210 au) resolution. B1-c provides a textbook example of compact H 2 18 O (3 1,3 −2 2,0 ) and HDO (3 1,2 −2 2,1 ) emission surrounded by a ring of H 13 CO + ( J = 2−1) and HC 18 O + ( J = 3−2). Compact HDO surrounded by H 13 CO + is also detected toward B1-bS. The optically thick main isotopologue HCO + is not suited to trace the snowline, and HC 18 O + is a better tracer than H 13 CO + due to a lower contribution from the outer envelope. However, because a detailed analysis is needed to derive a snowline location from H 13 CO + or HC 18 O + emission, their true value as a snowline tracer will lie in the application in sources where water cannot be readily detected. For protostellar envelopes, the most straightforward way to locate the water snowline is through observations of H 2 18 O or HDO. Including all subarcsecond-resolution water observations from the literature, we derive an average burst interval of ∼10,000 yr, but high-resolution water observations of a larger number of protostars are required to better constrain the burst frequency. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
  10. null (Ed.)
    Context. Recent years have seen building evidence that planet formation starts early, in the first ~0.5 Myr. Studying the dust masses available in young disks enables us to understand the origin of planetary systems given that mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. Aims. We aim to determine if disks in the embedded stage of star formation contain enough dust to explain the solid content of the most massive exoplanets. Methods. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 (1.1–1.3 mm) continuum observations of embedded disks in the Perseus star-forming region together with Very Large Array (VLA) Ka -band (9 mm) data to provide a robust estimate of dust disk masses from the flux densities measured in the image plane. Results. We find a strong linear correlation between the ALMA and VLA fluxes, demonstrating that emission at both wavelengths is dominated by dust emission. For a subsample of optically thin sources, we find a median spectral index of 2.5 from which we derive the dust opacity index β = 0.5, suggesting significant dust growth. Comparison with ALMA surveys of Orion shows that the Class I dust disk mass distribution between the two regions is similar, but that the Class 0 disks are more massive in Perseus than those in Orion. Using the DIANA opacity model including large grains, with a dust opacity value of κ 9 mm = 0.28 cm 2 g −1 , the median dust masses of the embedded disks in Perseus are 158 M ⊕ for Class 0 and 52 M ⊕ for Class I from the VLA fluxes. The lower limits on the median masses from ALMA fluxes are 47 M ⊕ and 12 M ⊕ for Class 0 and Class I, respectively, obtained using the maximum dust opacity value κ 1.3 mm = 2.3 cm 2 g −1 . The dust masses of young Class 0 and I disks are larger by at least a factor of ten and three, respectively, compared with dust masses inferred for Class II disks in Lupus and other regions. Conclusions. The dust masses of Class 0 and I disks in Perseus derived from the VLA data are high enough to produce the observed exoplanet systems with efficiencies acceptable by planet formation models: the solid content in observed giant exoplanets can be explained if planet formation starts in Class 0 phase with an efficiency of ~15%. A higher efficiency of ~30% is necessary if the planet formation is set to start in Class I disks. 
    more » « less