Abstract Semiconducting polymers are of interest due to their solution processibility and broad electronic applications. Electrochemistry allows these wide bandgap semiconductors to be converted to conducting polymers by doping such polymers at various potentials. When polymers arep‐doped to improve their conductivity via electrochemical oxidation, various positively‐charged carriers are created, including polarons (singly‐charged) and bipolarons (doubly‐charged). Carrier creation is accompanied by anion intercalation from the electrolyte for charge balance, and this insertion requires ion mobility. In this work, poly(3‐hexylthiophene) (P3HT) with different regioregularities is used to understand the relationship between solvent swelling, which affects anion intercalation, and electrochemical doping. Cyclic voltammetry, optical absorption spectroscopy, and grazing incidence wide‐angle X‐ray scattering (GIWAXS) measurements are used to correlate the doping level with structural changes. In situ electrochemical quartz crystal microbalance (EQCM) measurements are used to quantify the swelling of the polymers dynamically during electrochemical cycling. Lastly, in situ conductivity measurements are done to measure the effect of swelling on the ionic and electronic conductivity. The results indicate that solvent swelling is required for bipolaron formation, and that swelling facilitates both the small structural changes need for polaron formation and the disordering required for bipolaron formation.
more »
« less
Swelling as a stabilizing mechanism in irradiated thin films: II. Effect of swelling rate
Abstract It has long been observed experimentally that energetic ion-beam irradiation of semiconductor surfaces may lead to spontaneous nanopattern formation. For most ion/target/energy combinations, the patterns appear when the angle of incidence exceeds a critical angle, and the models commonly employed to understand this phenomenon exhibit the same behavioral transition. However, under certain conditions, patterns do not appear for any angle of incidence, suggesting an important mismatch between experiment and theory. Previous work by our group (Swenson and Norris 2018 J. Phys.: Condens. Matter 30 304003) proposed a model incorporating radiation-induced swelling, which is known to occur experimentally, and found that in the analytically-tractable limit of small swelling rates, this effect is stabilizing at all angles of incidence, which may explain the observed suppression of ripples. However, at that time, it was not clear how the proposed model would scale with increased swelling rate. In the present work, we generalize that analysis to the case of arbitrary swelling rates. Using a numerical approach, we find that the stabilization effect persists for arbitrarily large swelling rates, and maintains a stability profile largely similar to that of the small swelling case. Our findings strongly support the inclusion of a swelling mechanism in models of pattern formation under ion beam irradiation, and suggest that the simpler small-swelling limit is an adequate approximation for the full mechanism. They also highlight the need for more—and more detailed—experimental measurements of material stresses during pattern formation.
more »
« less
- Award ID(s):
- 1840260
- PAR ID:
- 10343167
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 34
- Issue:
- 32
- ISSN:
- 0953-8984
- Page Range / eLocation ID:
- 325302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The focused helium ion beam microscope is a versatile imaging and nanofabrication instrument enabling direct-write lithography with sub-10 nm resolution. Subsurface damage and swelling of substrates due to helium ion implantation is generally unwanted. However, these effects can also be leveraged for specific nanofabrication tasks. To explore this, we investigate focused helium ion beam induced swelling of bulk crystalline silicon and free-standing amorphous silicon nitride membranes using various irradiation strategies. We show that the creation of near-surface voids due to helium ion implantation can be used to induce surface nanostructure and create subsurface nanochannels. By tailoring the ion dose and beam energy, the size and depth of the swollen features can be controlled. Swelling heights of several hundred nanometers are demonstrated, and for the embedded nanochannels, void internal diameters down to 30 nm are shown. Potential applications include the engineering of texturized substrates and the prototyping of on-chip nanofluidic transport devices.more » « less
-
We studied the effects of internal free surfaces on the evolution of ion-induced void swelling in pure iron. The study was initially driven by the motivation to introduce a planar free-surface defect sink at depths that would remove the injected interstitial effect from ion irradiation, possibly enhancing swelling. Using the focused ion beam technique, deep trenches were created on a cross section of pure iron at various depths, so as to create bridges of thickness ranging from 0.88 μm to 1.70 μm. Samples were then irradiated with 3.5 MeV Fe2+ ions at 475 °C to a fluence corresponding to a peak displacement per atom dose of 150 dpa. The projected range of 3.5 MeV Fe2+ ions is about 1.2 μm so the chosen bridge thicknesses involved fractions of the ion range, thicknesses comparable to the mean ion range (peak of injected interstitial distribution), and thicknesses beyond the full range. It was found that introduction of such surfaces did not enhance swelling but actually decreased it, primarily because there were now two denuded zones with a combined stronger influence than that of the injected interstitial. The study suggests that such strong surface effects must be considered for ion irradiation studies of thin films or bridge-like structures.more » « less
-
We have measured the absolute doubly differential angular sputtering yield for 20 keV Kr+ impacting a polycrystalline Cu slab at an incidence angle of θi = 45° relative to the surface normal. Sputtered Cu atoms were captured using collectors mounted on a half dome above the sample, and the sputtering distribution was measured as a function of the sputtering polar, θs, and azimuthal, ϕs, angles. Absolute results of the sputtering yield were determined from the mass gain of each collector, the ion dose, and the solid angle subtended, after irradiation to a total fluence of ∼1 × 1018 ions/cm2. Our approach overcomes shortcomings of commonly used methods that only provide relative yields as a function of θs in the incidence plane (defined by the ion velocity and the surface normal). Our experimental results display an azimuthal variation that increases with increasing θs and is clearly discrepant with simulations using binary collision theory. We attribute the observed azimuthal anisotropy to ion-induced formation of micro- and nano-scale surface features that suppress the sputtering yield through shadowing and redeposition effects, neither of which are accounted for in the simulations. Our experimental results demonstrate the importance of doubly differential angular sputtering studies to probe ion sputtering processes at a fundamental level and to explore the effect of ion-beam-generated surface roughness.more » « less
-
Microstructural changes induced by helium implantation in materials lead to volumetric swelling and mechanical property changes. How these properties are linked and establishing direct relationships can be difficult due to the underlying material’s microstructure evolution. Some materials also experience a phase change due to irradiation damage making them even more complex to analyze. Here, single crystalline Si (100) was used to establish a relationship among these parameters. The swelling height as a function of implantation fluence can equally fit a linear relationship. Solely irradiation induced defects are observed at low fluence below 5.0 × 10 16 ions/cm 2 . An abrupt amorphous and crystalline mixed layer of ∼200 nm thick within a highly damaged polycrystalline matrix is observed when implantation fluence exceeds 5.0 × 10 16 ions/cm 2 , leading to the appearance of irradiation induced swelling and hardening behavior. As the fluence increases beyond 1.0 × 10 17 ions/cm 2 , the amorphous layer expands in size and the bubble size distribution takes the form of a Gaussian distribution with a maximum size of up to 6.4 nm, which causes a further increase in the height of swelling. Furthermore, irradiation induced softening appeared due to the enlarged bubble size and amorphization.more » « less
An official website of the United States government

