skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pareto-Optimal Clustering with the Primal Deterministic Information Bottleneck
At the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck (DIB) objective over the space of hard clusterings. To this end, we introduce the primal DIB problem, which we show results in a much richer frontier than its previously studied Lagrangian relaxation when optimized over discrete search spaces. We present an algorithm for mapping out the Pareto frontier of the primal DIB trade-off that is also applicable to other two-objective clustering problems. We study general properties of the Pareto frontier, and we give both analytic and numerical evidence for logarithmic sparsity of the frontier in general. We provide evidence that our algorithm has polynomial scaling despite the super-exponential search space, and additionally, we propose a modification to the algorithm that can be used where sampling noise is expected to be significant. Finally, we use our algorithm to map the DIB frontier of three different tasks: compressing the English alphabet, extracting informative color classes from natural images, and compressing a group theory-inspired dataset, revealing interesting features of frontier, and demonstrating how the structure of the frontier can be used for model selection with a focus on points previously hidden by the cloak of the convex hull.  more » « less
Award ID(s):
2019786
PAR ID:
10343307
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Entropy
Volume:
24
Issue:
6
ISSN:
1099-4300
Page Range / eLocation ID:
771
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Pareto-optimal frontier for a bi-objective search problem instance consists of all solutions that are not worse than any other solution in both objectives. The size of the Pareto-optimal frontier can be exponential in the size of the input graph, and hence finding it can be hard. Some existing works leverage a user-specified approximation factor ε to compute an approximate Pareto-optimal frontier that can be significantly smaller than the Pareto-optimal frontier. In this paper, we propose an anytime approximate bi-objective search algorithm, called Anytime Bi-Objective A*-ε (A-BOA*ε). A-BOA*ε is useful when deliberation time is limited. It first finds an approximate Pareto-optimal frontier quickly, iteratively improves it while time allows, and eventually finds the Pareto-optimal frontier. It efficiently reuses the search effort from previous iterations and makes use of a novel pruning technique. Our experimental results show that A-BOA*ε substantially outperforms baseline algorithms that do not reuse previous search effort, both in terms of runtime and number of node expansions. In fact, the most advanced variant of A-BOA*ε even slightly outperforms BOA*, a state-of-the-art bi-objective search algorithm, for finding the Pareto-optimal frontier. Moreover, given only a limited amount of deliberation time, A-BOA*ε finds solutions that collectively approximate the Pareto-optimal frontier much better than the solutions found by BOA*. 
    more » « less
  2. null (Ed.)
    While real-world decisions involve many competing objectives, algorithmic decisions are often evaluated with a single objective function. In this paper, we study algorithmic policies which explicitly trade off between a private objective (such as profit) and a public objective (such as social welfare). We analyze a natural class of policies which trace an empirical Pareto frontier based on learned scores, and focus on how such decisions can be made in noisy or data-limited regimes. Our theoretical results characterize the optimal strategies in this class, bound the Pareto errors due to inaccuracies in the scores, and show an equivalence between optimal strategies and a rich class of fairness-constrained profit-maximizing policies. We then present empirical results in two different contexts — online content recommendation and sustainable abalone fisheries — to underscore the generality of our approach to a wide range of practical decisions. Taken together, these results shed light on inherent trade-offs in using machine learning for decisions that impact social welfare. 
    more » « less
  3. null (Ed.)
    While real-world decisions involve many competing objectives, algorithmic decisions are often evaluated with a single objective function. In this paper, we study algorithmic policies which explicitly trade off between a private objective (such as profit) and a public objective (such as social welfare). We analyze a natural class of policies which trace an empirical Pareto frontier based on learned scores, and focus on how such decisions can be made in noisy or data-limited regimes. Our theoretical results characterize the optimal strategies in this class, bound the Pareto errors due to inaccuracies in the scores, and show an equivalence between optimal strategies and a rich class of fairness-constrained profit-maximizing policies. We then present empirical results in two different contexts — online content recommendation and sustainable abalone fisheries — to underscore the generality of our approach to a wide range of practical decisions. Taken together, these results shed light on inherent trade-offs in using machine learning for decisions that impact social welfare. 
    more » « less
  4. are explicitly contained in the text or be implicit. For example, demographic information about the author of a text can be predicted with above-chance accuracy from linguistic cues in the text itself. Letting alone its explicitness, some of the private information correlates with the output labels and therefore can be learned by a neural network. In such a case, there is a tradeoff between the utility of the representation (measured by the accuracy of the classification network) and its privacy. This problem is inherently a multi-objective problem because these two objectives may conflict, necessitating a trade-off. Thus, we explicitly cast this problem as multi-objective optimization (MOO) with the overall objective of finding a Pareto stationary solution. We, therefore, propose a multiple-gradient descent algorithm (MGDA) that enables the efficient application of the Frank-Wolfe algorithm [10] using the line search. Experimental results on sentiment analysis and part-of-speech (POS) tagging show that MGDA produces higher-performing models than most recent proxy objective approaches, and performs as well as single objective baselines. 
    more » « less
  5. Spamming reviews are prevalent in review systems to manipulate seller reputation and mislead customers. Spam detectors based on graph neural networks (GNN) exploit representation learning and graph patterns to achieve state-of-the-art detection accuracy. The detection can influence a large number of real-world entities and it is ethical to treat different groups of entities as equally as possible. However, due to skewed distributions of the graphs, GNN can fail to meet diverse fairness criteria designed for different parties. We formulate linear systems of the input features and the adjacency matrix of the review graphs for the certification of multiple fairness criteria. When the criteria are competing, we relax the certification and design a multi-objective optimization (MOO) algorithm to explore multiple efficient trade-offs, so that no objective can be improved without harming another objective. We prove that the algorithm converges to a Pareto efficient solution using duality and the implicit function theorem. Since there can be exponentially many trade-offs of the criteria, we propose a data-driven stochastic search algorithm to approximate Pareto fronts consisting of multiple efficient trade-offs. Experimentally, we show that the algorithms converge to solutions that dominate baselines based on fairness regularization and adversarial training. 
    more » « less