skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Generative Design: Reframing the Role of the Designer in Early-Stage Design Process
Abstract

Generative design tools empowered by recent advancements in artificial intelligence (AI) offer the opportunity for human designers and design tools to collaborate in new, more advanced modes throughout various stages of the product design process to facilitate the creation of higher performing and more complex products. This paper explores how the use of these generative design tools may impact the design process, designer behavior, and overall outcomes. Six in-depth interviews were conducted with practicing and student designers from different disciplines who use commercial generative design tools, detailing the design processes they followed. From a grounded theory-based analysis of the interviews, a provisional process diagram for generative design and its uses in the early-stage design process is proposed. The early stages of defining tool inputs bring about a constraint-driven process in which designers focus on the abstraction of the design problem. Designers will iterate through the inputs to improve both quantitative and qualitative metrics. The learning through iteration allows designers to gain a thorough understanding of the design problem and solution space. This can bring about creative applications of generative design tools in early-stage design to provide guidance for traditionally designed products.

 
more » « less
Award ID(s):
1854833
PAR ID:
10475562
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
145
Issue:
4
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Developments in artificial intelligence (AI) are opening the possibilities for the development of more advanced design tools. An example of these innovations are generative design tools, in which the generation of complex and high performing products is possible. This study investigates the use of generative design tools and how they may influence the design process and designer behaviour. Six interviews of interdisciplinary designers were conducted to understand the implications of using generative design tools. It was observed that generative design tools primarily allow for quantitative inputs to the tool while qualitative metrics, such as aesthetics, are considered indirectly by designers. The subjectivity of the designer and how they incorporate the quantitative and qualitative metrics in the generative design tool can lead to differing outcomes between designers. Notable differences in tool usage are also observed between expert and novice computational designers. Additional studies should be conducted to further understand the extent generative design tools impact the design process, designer behaviour, and design outcomes.

     
    more » « less
  2. null (Ed.)
    Abstract

    Additive manufacturing (AM) processes present designers with unique capabilities while imposing several process limitations. Designers must leverage the capabilities of AM — through opportunistic design for AM (DfAM) — and accommodate AM limitations — through restrictive DfAM — to successfully employ AM in engineering design. These opportunistic and restrictive DfAM techniques starkly contrast the traditional, limitation-based design for manufacturing techniques — the current standard for design for manufacturing (DfM). Therefore, designers must transition from a restrictive DfM mindset towards a ‘dual’ design mindset — using opportunistic and restrictive DfAM concepts. Designers’ prior experience, especially with a partial set of DfM and DfAM techniques could inhibit their ability to transition towards a dual DfAM approach. On the other hand, experienced designers’ auxiliary skills (e.g., with computer-aided design) could help them successfully use DfAM in their solutions. Researchers have investigated the influence of prior experience on designers’ use of DfAM tools in design; however, a majority of this work focuses on early-stage ideation. Little research has studied the influence of prior experience on designers’ DfAM use in the later design stages, especially in formal DfAM educational interventions, and we aim to explore this research gap. From our results, we see that experienced designers report higher baseline self-efficacy with restrictive DfAM but not with opportunistic DfAM. We also see that experienced designers demonstrate a greater use of certain DfAM concepts (e.g., part and assembly complexity) in their designs. These findings suggest that introducing designers to opportunistic DfAM early could help develop a dual design mindset; however, having more engineering experience might be necessary for them to implement this knowledge into their designs.

     
    more » « less
  3. Abstract

    Computer-aided design (CAD) is a standard design tool used in engineering practice and by students. CAD has become increasingly analytic and inventive in incorporating artificial intelligence (AI) approaches to design, e.g., generative design (GD), to help expand designers' divergent thinking. However, generative design technologies are relatively new, we know little about generative design thinking in students. This research aims to advance our understanding of the relationship between aspects of generative design thinking and traditional design thinking. This study was set in an introductory graphics and design course where student designers used Fusion 360 to optimize a bicycle wheel frame. We collected the following data from the sample: divergent and convergent psychological tests and an open-ended response to a generative design prompt (called the generative design reasoning elicitation problem). A Spearman's rank correlation showed no statistically significant relationship between generative design reasoning and divergent thinking. However, an analysis of variance found a significant difference in generative design reasoning and convergent thinking between groups with moderate GD reasoning and low GD reasoning. This study shows that new computational tools might present the same challenges to beginning designers as conventional tools. Instructors should be aware of informed design practices and encourage students to grow into informed designers by introducing them to new technology, such as generative design.

     
    more » « less
  4. The early phases of the product design process are crucial to the success of design outcomes. While information utilized during idea development has tremendous potential to impact the final design, there is a lack of understanding about the types of information utilized in industry, making it challenging to develop and teach methodologies that support the design of competitive products. As a first step in understanding this process, this study focuses on developing a framework of Information Archetypes utilized by designers in industry. This was accomplished through in-depth analysis of qualitative interviews with large software engineering companies. The results reveal two archetypes of information utilized by decision-makers within these companies during the development of new products and services. The findings of this study allow for future research that investigates the role of information during the product design process. 
    more » « less
  5. Moghaddam, Mohsen ; Marion, Tucker ; Holtta-Otto, Katja ; Fu, Kate ; Olechowski, Alison ; McComb, Christopher (Ed.)
    The early-stage product design and development (PDD) process fundamentally involves the processing, synthesis, and communication of a large amount of information to make a series of key decisions on design exploration and specification, concept generation and evaluation, and prototyping. Although most current PDD practices depend heavily on human intuition, advances in computing, communication, and human–computer interaction technologies can transform PDD processes by combining the creativity and ingenuity of human designers with the speed and precision of computers. Emerging technologies like artificial intelligence (AI), cloud computing, and extended reality (XR) stand to substantially change the way designers process information and make decisions in the early stages of PDD by enabling new methods such as natural language processing, generative modeling, cloud-based virtual collaboration, and immersive design and prototyping. These new technologies are unlikely to render the human designer obsolete, but rather do change the role that the human designer plays. Thus, it is essential to understand the designer's role as an individual, a team, and a group that forms an organization. The purpose of this special issue is to synthesize the state-of-the-art research on technologies and methods that augment the performance of designers in the front-end of PDD—from understanding user needs to conceptual design, prototyping, and development of systems architecture while also emphasizing the critical need to understand the designer and their role as well. 
    more » « less