skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Hidden Markov Forest Model for Terrain-Aware Flood Inundation Mapping from Earth Imagery
Flood inundation mapping from Earth imagery plays a vital role in rapid disaster response and national water forecasting. However, the problem is non-trivial due to significant imagery noise and obstacles, complex spatial dependency on 3D terrains, spatial non-stationarity, and high computational cost. Existing machine learning approaches are mostly terrain-unaware and are prone to produce spurious results due to imagery noise and obstacles, requiring significant efforts in post-processing. Recently, several terrain- aware methods were proposed that incorporate complex spatial dependency (e.g., water flow directions on 3D terrains) but they assume that the inferred flood surface level is spatially stationary, making them insufficient for a large heterogeneous geographic area. To address these limitations, this paper proposes a novel spatial learning framework called hidden Markov forest, which decomposes a large heterogeneous area into local stationary zones, represents spatial dependency on 3D terrains via zonal trees (forest), and jointly infers the class map in different zonal trees with spatial regularization. We design efficient inference algorithms based on dynamic programming and multi-resolution filtering. Evaluations on real-world datasets show that our method outperforms baselines and our proposed computational refinement significantly reduces the time cost.  more » « less
Award ID(s):
2106461
PAR ID:
10437003
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2023 SIAM International Conference on Data Mining (SDM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given earth imagery with spectral features on a terrain surface, this paper studies surface segmentation based on both explanatory features and surface topology. The problem is important in many spatial and spatiotemporal applications such as flood extent mapping in hydrology. The problem is uniquely challenging for several reasons: first, the size of earth imagery on a terrain surface is often much larger than the input of popular deep convolutional neural networks; second, there exists topological structure dependency between pixel classes on the surface, and such dependency can follow an unknown and non-linear distribution; third, there are often limited training labels. Existing methods for earth imagery segmentation often divide the imagery into patches and consider the elevation as an additional feature channel. These methods do not fully incorporate the spatial topological structural constraint within and across surface patches and thus often show poor results, especially when training labels are limited. Existing methods on semi-supervised and unsupervised learning for earth imagery often focus on learning representation without explicitly incorporating surface topology. In contrast, we propose a novel framework that explicitly models the topological skeleton of a terrain surface with a contour tree from computational topology, which is guided by the physical constraint (e.g., water flow direction on terrains). Our framework consists of two neural networks: a convolutional neural network (CNN) to learn spatial contextual features on a 2D image grid, and a graph neural network (GNN) to learn the statistical distribution of physics-guided spatial topological dependency on the contour tree. The two models are co-trained via variational EM. Evaluations on the real-world flood mapping datasets show that the proposed models outperform baseline methods in classification accuracy, especially when training labels are limited. 
    more » « less
  2. The accurate and prompt mapping of flood-affected regions is important for effective disaster management, including damage assessment and relief efforts. While high-resolution optical imagery from satellites during disasters presents an opportunity for automated flood inundation mapping, existing segmentation models face challenges due to noises such as cloud cover and tree canopies. Thanks to the digital elevation model (DEM) data readily available from sources such as United States Geological Survey (USGS), terrain guidance was utilized by recent graphical models such as hidden Markov trees (HMTs) to improve segmentation quality. Unfortunately, these methods either can only handle a small area where water levels at different locations are assumed to be consistent or require restricted assumptions such as there is only one river channel. This article presents an algorithm for flood extent mapping on large-scale Earth imagery, applicable to a large geographic area with multiple river channels. Since water level can vary a lot from upstream to downstream, we propose to detect river pixels to partition the remaining pixels into localized zones, each with a unique water level. In each zone, water at all locations flows to the same river entry point. Pixels in each zone are organized by an HMT to capture water flow directions guided by elevations. Moreover, a novel regularization scheme is designed to enforce inter-zone consistency by penalizing pixel-pairs of adjacent zones that violate terrain guidance. Efficient parallelization is made possible by coloring the zone adjacency graph to identify zones and zone-pairs that have no dependency and hence can be processed in parallel, and incremental one-pass terrain-guided scanning is conducted wherever applicable to reuse computations. Experiments demonstrate that our solution is more accurate than existing solutions and can efficiently and accurately map out flooding pixels in a giant area of size 24,805 × 40,129. Despite the imbalanced workloads caused by a few large zonal HMTs dominating the serial computing time, our parallelization approach is effective and manages to achieve up to 14.3× speedup on a machine with Intel Xeon Gold 6126 CPU @ 2.60 GHz (24 cores, 48 threads) using 32 threads. 
    more » « less
  3. Improving high-resolution (meter-scale) mapping of snow-covered areas in complex and forested terrains is critical to understanding the responses of species and water systems to climate change. Commercial high-resolution imagery from Planet Labs, Inc. (Planet, San Francisco, CA, USA) can be used in environmental science, as it has both high spatial (0.7–3.0 m) and temporal (1–2 day) resolution. Deriving snow-covered areas from Planet imagery using traditional radiometric techniques have limitations due to the lack of a shortwave infrared band that is needed to fully exploit the difference in reflectance to discriminate between snow and clouds. However, recent work demonstrated that snow cover area (SCA) can be successfully mapped using only the PlanetScope 4-band (Red, Green, Blue and NIR) reflectance products and a machine learning (ML) approach based on convolutional neural networks (CNN). To evaluate how additional features improve the existing model performance, we: (1) build on previous work to augment a CNN model with additional input data including vegetation metrics (Normalized Difference Vegetation Index) and DEM-derived metrics (elevation, slope and aspect) to improve SCA mapping in forested and open terrain, (2) evaluate the model performance at two geographically diverse sites (Gunnison, Colorado, USA and Engadin, Switzerland), and (3) evaluate the model performance over different land-cover types. The best augmented model used the Normalized Difference Vegetation Index (NDVI) along with visible (red, green, and blue) and NIR bands, with an F-score of 0.89 (Gunnison) and 0.93 (Engadin) and was found to be 4% and 2% better than when using canopy height- and terrain-derived measures at Gunnison, respectively. The NDVI-based model improves not only upon the original band-only model’s ability to detect snow in forests, but also across other various land-cover types (gaps and canopy edges). We examined the model’s performance in forested areas using three forest canopy quantification metrics and found that augmented models can better identify snow in canopy edges and open areas but still underpredict snow cover under forest canopies. While the new features improve model performance over band-only options, the models still have challenges identifying the snow under trees in dense forests, with performance varying as a function of the geographic area. The improved high-resolution snow maps in forested environments can support studies involving climate change effects on mountain ecosystems and evaluations of hydrological impacts in snow-dominated river basins. 
    more » « less
  4. Abstract Motivated by a possible convergence of terrestrial limbless locomotion strategies ultimately determined by interfacial effects, we show how both 3D gait alterations and locomotory adaptations to heterogeneous terrains can be understood through the lens of local friction modulation. Via an effective-friction modeling approach, compounded by 3D simulations, the emergence and disappearance of a range of locomotory behaviors observed in nature is systematically explained in relation to inhabited environments. Our approach also simplifies the treatment of terrain heterogeneity, whereby even solid obstacles may be seen as high friction regions, which we confirm against experiments of snakes ‘diffracting’ while traversing rows of posts, similar to optical waves. We further this optic analogy by illustrating snake refraction, reflection and lens focusing. We use these insights to engineer surface friction patterns and demonstrate passive snake navigation in complex topographies. Overall, our study outlines a unified view that connects active and passive 3D mechanics with heterogeneous interfacial effects to explain a broad set of biological observations, and potentially inspire engineering design. 
    more » « less
  5. null (Ed.)
    Abstract. High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure from Motion (SFM) method. We fine-tuned a pretrained Visual Geometry Group 16 (VGG-16) based fully convolutional model to create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates during a flood event. 
    more » « less