Abstract Engineering stabilized proteins is a fundamental challenge in the development of industrial and pharmaceutical biotechnologies. We present Stability Oracle: a structure-based graph-transformer framework that achieves SOTA performance on accurately identifying thermodynamically stabilizing mutations. Our framework introduces several innovations to overcome well-known challenges in data scarcity and bias, generalization, and computation time, such as: Thermodynamic Permutations for data augmentation, structural amino acid embeddings to model a mutation with a single structure, a protein structure-specific attention-bias mechanism that makes transformers a viable alternative to graph neural networks. We provide training/test splits that mitigate data leakage and ensure proper model evaluation. Furthermore, to examine our data engineering contributions, we fine-tune ESM2 representations (Prostata-IFML) and achieve SOTA for sequence-based models. Notably, Stability Oracle outperforms Prostata-IFML even though it was pretrained on 2000X less proteins and has 548X less parameters. Our framework establishes a path for fine-tuning structure-based transformers to virtually any phenotype, a necessary task for accelerating the development of protein-based biotechnologies.
more »
« less
Robust (Controlled) Table-to-Text Generation with Structure-Aware Equivariance Learning
Controlled table-to-text generation seeks to generate natural language descriptions for highlighted subparts of a table. Previous SOTA systems still employ a sequence-to-sequence generation method, which merely captures the table as a linear structure and is brittle when table layouts change. We seek to go beyond this paradigm by (1) effectively expressing the relations of content pieces in the table, and (2) making our model robust to content-invariant structural transformations. Accordingly, we propose an equivariance learning framework, which encodes tables with a structure-aware self-attention mechanism. This prunes the full self-attention structure into an order-invariant graph attention that captures the connected graph structure of cells belonging to the same row or column, and it differentiates between relevant cells and irrelevant cells from the structural perspective. Our framework also modifies the positional encoding mechanism to preserve the relative position of tokens in the same cell but enforce position invariance among different cells. Our technology is free to be plugged into existing table-to-text generation models, and has improved T5-based models to offer better performance on ToTTo and HiTab. Moreover, on a harder version of ToTTo, we preserve promising performance, while previous SOTA systems, even with transformation-based data augmentation, have seen significant performance drops.
more »
« less
- Award ID(s):
- 2105329
- PAR ID:
- 10343362
- Date Published:
- Journal Name:
- Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
- Page Range / eLocation ID:
- 5037 to 5048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A table is composed of data values that are organized in %a 2D matrix with rows and columns providing implicit structural information. A table is usually accompanied by secondary information such as the caption, page title, etc., that form the textual information. Understanding the connection between the textual and structural information is an important, yet neglected aspect in table retrieval, as previous methods treat each source of information independently. In this paper, we propose StruBERT, a structure-aware BERT model that fuses the textual and structural information of a data table to produce context-aware representations for both textual and tabular content of a data table. We introduce the concept of horizontal self-attention, which extends the idea of vertical self-attention introduced in TaBERT and allows us to treat both dimensions of a table equally. StruBERT features are integrated in a new end-to-end neural ranking model to solve three table-related downstream tasks: keyword- and content-based table retrieval, and table similarity. We evaluate our approach using three datasets, and we demonstrate substantial improvements in terms of retrieval and classification metrics over state-of-the-art methods.more » « less
-
Document authors commonly use tables to support arguments presented in the text. But, because tables are usually separate from the main body text, readers must split their attention between different parts of the document. We present an interactive document reader that automatically links document text with corresponding table cells. Readers can select a sentence (or tables cells) and our reader highlights the relevant table cells (or sentences). We provide an automatic pipeline for extracting such references between sentence text and table cells for existing PDF documents that combines structural analysis of tables with natural language processing and rule-based matching. On a test corpus of 330 (sentence, table) pairs, our pipeline correctly extracts 48.8% of the references. An additional 30.5% contain only false negatives (FN) errors -- the reference is missing table cells. The remaining 20.7% contain false positives (FP) errors -- the reference includes extraneous table cells and could therefore mislead readers. A user study finds that despite such errors, our interactive document reader helps readers match sentences with corresponding table cells more accurately and quickly than a baseline document reader.more » « less
-
For decades, research in natural language processing (NLP) has focused on summarization. Sequence-to-sequence models for abstractive summarization have been studied extensively, yet generated summaries commonly suffer from fabricated content, and are often found to be near-extractive. We argue that, to address these issues, summarizers need to acquire the co-references that form multiple types of relations over input sentences, e.g., 1-to-N, N-to-1, and N-to-N relations, since the structured knowledge for text usually appears on these relations. By allowing the decoder to pay different attention to the input sentences for the same entity at different generation states, the structured graph representations generate more informative summaries. In this paper, we propose a hierarchical graph attention networks (HGATs) for abstractive summarization with a topicsensitive PageRank augmented graph. Specifically, we utilize dual decoders, a sequential sentence decoder, and a graph-structured decoder (which are built hierarchically) to maintain the global context and local characteristics of entities, complementing each other. We further design a greedy heuristic to extract salient users’ comments while avoiding redundancy to drive a model to better capture entity interactions. Our experimental results show that our models produce significantly higher ROUGE scores than variants without graph-based attention on both SSECIF and CNN/Daily Mail (CNN/DM) datasets.more » « less
-
In this paper, we are the first to propose a new graph convolution-based decoder namely, Cascaded Graph Convolutional Attention Decoder (G-CASCADE), for 2D medical image segmentation. G-CASCADE progressively refines multi-stage feature maps generated by hierarchical transformer encoders with an efficient graph convolution block. The encoder utilizes the self-attention mechanism to capture long-range dependencies, while the decoder refines the feature maps preserving long-range information due to the global receptive fields of the graph convolution block. Rigorous evaluations of our decoder with multiple transformer encoders on five medical image segmentation tasks (i.e., Abdomen organs, Cardiac organs, Polyp lesions, Skin lesions, and Retinal vessels) show that our model outperforms other state-of-the-art (SOTA) methods. We also demonstrate that our decoder achieves better DICE scores than the SOTA CASCADE decoder with 80.8% fewer parameters and 82.3% fewer FLOPs. Our decoder can easily be used with other hierarchical encoders for general-purpose semantic and medical image segmentation tasks.more » « less
An official website of the United States government

