Table search aims to retrieve a list of tables given a user's query. Previous methods only consider the textual information of tables and the structural information is rarely used. In this paper, we propose to model the complex relations in the table corpus as one or more graphs and then utilize graph neural networks to learn representations of queries and tables. We show that the text-based table retrieval methods can be further improved by graph-based predictions which fuse multiple field-level information. 
                        more » 
                        « less   
                    
                            
                            StruBERT: Structure-aware BERT for Table Search and Matching
                        
                    
    
            A table is composed of data values that are organized in %a 2D matrix with rows and columns providing implicit structural information. A table is usually accompanied by secondary information such as the caption, page title, etc., that form the textual information. Understanding the connection between the textual and structural information is an important, yet neglected aspect in table retrieval, as previous methods treat each source of information independently. In this paper, we propose StruBERT, a structure-aware BERT model that fuses the textual and structural information of a data table to produce context-aware representations for both textual and tabular content of a data table. We introduce the concept of horizontal self-attention, which extends the idea of vertical self-attention introduced in TaBERT and allows us to treat both dimensions of a table equally. StruBERT features are integrated in a new end-to-end neural ranking model to solve three table-related downstream tasks: keyword- and content-based table retrieval, and table similarity. We evaluate our approach using three datasets, and we demonstrate substantial improvements in terms of retrieval and classification metrics over state-of-the-art methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1816325
- PAR ID:
- 10393251
- Date Published:
- Journal Name:
- Proceedings of the ACM Web Conference 2022
- Page Range / eLocation ID:
- 442 to 451
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Controlled table-to-text generation seeks to generate natural language descriptions for highlighted subparts of a table. Previous SOTA systems still employ a sequence-to-sequence generation method, which merely captures the table as a linear structure and is brittle when table layouts change. We seek to go beyond this paradigm by (1) effectively expressing the relations of content pieces in the table, and (2) making our model robust to content-invariant structural transformations. Accordingly, we propose an equivariance learning framework, which encodes tables with a structure-aware self-attention mechanism. This prunes the full self-attention structure into an order-invariant graph attention that captures the connected graph structure of cells belonging to the same row or column, and it differentiates between relevant cells and irrelevant cells from the structural perspective. Our framework also modifies the positional encoding mechanism to preserve the relative position of tokens in the same cell but enforce position invariance among different cells. Our technology is free to be plugged into existing table-to-text generation models, and has improved T5-based models to offer better performance on ToTTo and HiTab. Moreover, on a harder version of ToTTo, we preserve promising performance, while previous SOTA systems, even with transformation-based data augmentation, have seen significant performance drops.more » « less
- 
            Table retrieval is the task of extracting the most relevant tables to answer a user's query. Table retrieval is an important task because many domains have tables that contain useful information in a structured form. Given a user's query, the goal is to obtain a relevance ranking for query-table pairs, such that higher ranked tables should be more relevant to the query. In this paper, we present a context-aware table retrieval method that is based on a novel embedding for attribute tokens. We find that differentiated types of contexts are useful in building word embeddings. We also find that including a specialized representation of numerical cell values in our model improves table retrieval performance. We use the trained model to predict different contexts of every table. We show that the predicted contexts are useful in ranking tables against a query using a multi-field ranking approach. We evaluate our approach using public WikiTables data, and we demonstrate improvements in terms of NDCG over unsupervised baseline methods in the table retrieval task.more » « less
- 
            null (Ed.)We address the problem of ad hoc table retrieval via a new neural architecture that incorporates both semantic and relevance matching. Understanding the connection between the structured form of a table and query tokens is an important yet neglected problem in information retrieval. We use a learning- to-rank approach to train a system to capture semantic and relevance signals within interactions between the structured form of candidate tables and query tokens. Convolutional filters that extract contextual features from query/table interactions are combined with a feature vector based on the distributions of term similarity between queries and tables. We propose using row and column summaries to incorporate table content into our new neural model. We evaluate our approach using two datasets, and we demonstrate substantial improvements in terms of retrieval metrics over state-of-the-art methods in table retrieval and document retrieval, and neural architectures from sentence, document, and table type classification adapted to the table retrieval task. Our ablation study supports the importance of both semantic and relevance matching in the table retrieval.more » « less
- 
            Automatically recommending suitable tags for online content is a necessary task for better information organization and retrieval. In this article, we propose a generative model SimWord for the tag recommendation problem on textual content. The key observation of our model is that the tags and their relevant/similar words may have appeared in the corresponding content. In particular, we first empirically verify this observation in real data sets, and then design a supervised topic model which is guided by the above observation for tag recommendation. Experimental evaluations demonstrate that the proposed method outperforms several existing methods in terms of recommendation accuracy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    