skip to main content


Title: Controllable Frontal Polymerization and Spontaneous Patterning Enabled by Phase‐Changing Particles
Abstract

Frontal polymerization provides a rapid, economic, and environmentally friendly methodology to manufacture thermoset polymers and composites. Despite its efficiency and reduced environmental impact, the manufacturing method is underutilized due to the limited fundamental understanding of its dynamic control. This work reports the control and patterning of the front propagation in a dicyclopentadiene resin by immersion of phase‐changing polycaprolactone particles. Predictive and designed patterning is enabled by multiphysical numerical analyses, which reveal that the interplay between endothermic phase transition, exothermic chemical reaction, and heat exchange govern the temperature, velocity, and propagation path of the front via two different interaction regimes. To pattern the front, one can vary the size and spacing between the particles and increase the number of propagating fronts, resulting in tunable physical patterns formed due to front separation and merging near the particles. Both single‐ and double‐frontal polymerization experiments in an open mold are performed. The results confirm the front–particle interaction mechanisms and the shapes of the patterns explored numerically. The present study offers a fundamental understanding of frontal polymerization in the presence of heat‐absorbing second‐phase materials and proposes a potential one‐step manufacturing method for precisely patterned polymeric and composite materials without masks, molds, or printers.

 
more » « less
Award ID(s):
1933932
NSF-PAR ID:
10449140
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
17
Issue:
42
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Frontal polymerization (FP) is a promising alternative manufacturing method for thermoset-based fiber-reinforced polymer composites (FRP) in comparison with the traditional autoclave/oven-curing method, due to its rapid curing process, low energy consumption, and low cost. Optimizing the weight contents of initiators relative to the resin’s mass is needed to adjust the mechanical properties of FRPs in industrial applications. This study investigates the effect of varying the photo-initiator (PI) weight content on tensile properties and the frontal polymerization characteristics, including the front velocity, front temperature, and degree of cure, in the FP process of the epoxy resin. Specifically, a dual-initiator system, including PI and thermal-initiator (TI), is used to initiate the polymerization process by ultraviolent (UV) light. The weight content of the TI is fixed at 1 w%, and the relative PI concentration is varied from 0.2 w% to 0.5 wt%. Results show that increasing the PI amount from 0.2 wt% to 0.3 wt% significantly improves the front velocity and the degree of cure by about two times. Increasing the PI content from 0.3 wt% to 0.4 wt% results in 15% and 26% higher degree of cure and front velocity, respectively. Moreover, due to the different front velocity in the top and bottom regions of the specimen, the specimens with 0.4 wt% PI exhibited a curved shape. The specimen with 0.5 wt% PI is thermally degraded and foamed. By comparing tensile properties, it is found that increasing the PI concentration from 0.2 wt% to 0.3 wt% improves the tensile strength and Young’s modulus by 3.91% and 7%, respectively, while the tensile strength and the Young’s modulus of frontal polymerized specimens are on average 8% and 14% higher than traditionally oven-cured ones, respectively. 
    more » « less
  2. Aerosol jet printing is a compelling technology for hybrid electronics, combining digital and noncontact patterning with broad materials compatibility, resolution as fine as ≈10 microns, and a high standoff distance of 1–5 mm. Despite its growing popularity in research environments, a robust process understanding and improved manufacturing control are essential for achieving the reliability and predictability required for broader adoption in advanced applications. Herein, recent developments in process monitoring using in‐line light scattering measurements are discussed, including their mechanistic foundations, experimental validation, relevance for process control and reliability, and value as a diagnostic tool for fundamental studies. Experimental measurements confirm the correlation between measured light scattering and deposition rate. Building on this platform, feedback from the real‐time measurement is coupled with printer software to support automated closed‐loop control via a simple proportional‐integral‐derivative software control loop. Combined with the utility of these measurements as a diagnostic to accelerate ink formulation and support fundamental process science experiments, this in‐line measurement provides a useful tool to improve print reliability with the potential to advance the adoption and capabilities of this method in conformal, flexible, and hybrid electronics applications.

     
    more » « less
  3. Due to the incapability of one-dimensional (1D) and two-dimensional (2D) models in simulating the frontal polymerization (FP) process in laminated composites with multiple fiber angles (e.g., cross-ply, angle-ply), modeling a three-dimensional (3D) domain, which is more representative of practical applications, provides critical guidance in the control and optimization of the FP process. In this paper, subroutines are developed to achieve the 3D modeling of FP in unidirectional and cross-ply carbon fiber laminates with finite element analysis, which are validated against the experimental data. The 3D model is employed to study the effect of triggering direction in relevance to the fiber direction on the FP process, which cannot be studied using traditional 1D/2D models. Our findings suggest that triggering in the fiber direction leads to a higher front velocity, in comparison to cases where front was triggered in the direction perpendicular to the fiber. Moreover, the average front velocity in cross-ply laminates is on average 20~25% lower than that in unidirectional laminates. When triggered using two opposite fronts in the in-plane direction, the maximum temperature of the thermal spike in the cross-ply laminate, when two fronts merge, is about 100 °C lower than that in the unidirectional laminate. In cross-ply laminates, a sloped pattern forms across the thickness direction as the front propagates in the in-plane direction, as opposed to the traditionally observed uniform propagation pattern in unidirectional cases. Furthermore, the effect of thermal conductivity is studied using two additional composite laminates with glass (1.14 W/m·K) and Kevlar fibers (0.04 W/m·K). It is shown that the frontal velocity, degree of cure, and the thermal spike temperature decrease as the thermal conductivity reduces. 
    more » « less
  4. Abstract

    Decades of advances in understanding and simulating the polymerization kinetics and structural evolution that arises in free‐radical photopolymerizations of multifunctional monomers are combined into a single, first‐principles 3D model. The model explicitly accounts for polymerization features including diffusion‐controlled kinetics, oxygen inhibition, light attenuation, chain‐length dependent termination, reaction‐diffusion termination, heat transfer, composition and conversion‐dependent material properties, crosslinking effects, and species diffusion. Using the homopolymerization of 1,6‐hexanediol diacrylate as a model system, a minimum of two kinetics experiments performed at different initiation rates are required to fit model parameters. The model accurately predicts known relationships regarding oxygen inhibition, light intensity, and curing temperature for samples of different geometries and boundary conditions. The emphasis of the results herein is placed on the interactions between polymerization features, motivating the importance of a model that accommodates these features all in one simulation. The model is shown to be robust in its handling of thermal boundary conditions, alternative polymerization techniques or mechanisms, and characteristics of 3D voxel formation. The model in this work provides a useful tool for property prediction in a wide variety of applications, most notably coatings, dental materials, industrial photocuring processes, additive manufacturing, and holography, where complex interactions of the various features of polymerization play a substantial role.

     
    more » « less
  5. Intracellular compartmentalization plays a pivotal role in cellular function, with membrane-bound organelles and membrane-less biomolecular 'condensates' playing key roles. These condensates, formed through liquid-liquid phase separation (LLPS), enable selective compartmentalization without the barrier of a lipid bilayer, thereby facilitating rapid formation/dissolution in response to stimuli. Intrinsically disordered proteins (IDPs) and/or proteins with intrinsically disordered regions (IDRs), which are often rich in charged and polar amino acid sequences, scaffold many condensates, often in conjunction with RNA. Comprehending the impact of IDP/IDR sequences on phase separation poses a challenge due to the extensive chemical diversity resulting from the myriad amino acids and post-translational modifications. To tackle this hurdle, one approach has been to investigate LLPS in simplified polypeptide systems, which offer a narrower scope within the chemical space for exploration. This strategy is supported by studies that have demonstrated how IDP function can largely be understood based on general chemical features, such as clusters or patterns of charged amino acids, rather than residue-level effects, and the ways in which these kinds of motifs give rise to an ensemble of conformations. Our lab has utilized complex coacervates assembled from oppositely-charged polypeptides as a simplified material analogue to the complexity of liquid-liquid phase separated biological condensates. Complex coacervation is an associative LLPS that occurs due to the electrostatic complexation of oppositely-charged macro-ions. This process is believed to be driven by the entropic gains resulting from the release of bound counterions and the reorganization of water upon complex formation. Apart from their direct applicability to IDPs, polypeptides also serve as excellent model polymers for investigating molecular interactions due to the wide range of available side-chain functionalities and the capacity to finely regulate their sequence, thus enabling precise control over interactions with guest molecules. Here, we discuss fundamental studies examining how charge patterning, hydrophobicity, chirality, and architecture affect the phase separation of polypeptide-based complex coacervates. These efforts have leveraged a combination of experimental and computational approaches that provide insight into the molecular level interactions. We also examine how these parameters affect the ability of complex coacervates to incorporate globular proteins and viruses. These efforts couple directly with our fundamental studies into coacervate formation, as such ‘guest’ molecules should not be considered as experiencing simple encapsulation and are instead active participants in the electrostatic assembly of coacervate materials. Interestingly, we observed trends in the incorporation of proteins and viruses into coacervates formed using different chain length polypeptides that are not well explained by simple electrostatic arguments and may be the result of more complex interactions between globular and polymeric species. Additionally, we describe experimental evidence supporting the potential for complex coacervates to improve the thermal stability of embedded biomolecules such as viral vaccines. Ultimately, peptide-based coacervates have the potential to help unravel the physics behind biological condensates while paving the way for innovative methods in compartmentalization, purification, and biomolecule stabilization. These advancements could have implications spanning from medicine to biocatalysis. 
    more » « less