skip to main content


Title: Inference in high-dimensional linear regression via lattice basis reduction and integer relation detection
We consider the high-dimensional linear regression problem, where the algorithmic goal is to efficiently infer an unknown feature vector $\beta^*\in\mathbb{R}^p$ from its linear measurements, using a small number $n$ of samples. Unlike most of the literature, we make no sparsity assumption on $\beta^*$, but instead adopt a different regularization: In the noiseless setting, we assume $\beta^*$ consists of entries, which are either rational numbers with a common denominator $Q\in\mathbb{Z}^+$ (referred to as $Q-$rationality); or irrational numbers taking values in a rationally independent set of bounded cardinality, known to learner; collectively called as the mixed-range assumption. Using a novel combination of the Partial Sum of Least Squares (PSLQ) integer relation detection, and the Lenstra-Lenstra-Lov\'asz (LLL) lattice basis reduction algorithms, we propose a polynomial-time algorithm which provably recovers a $\beta^*\in\mathbb{R}^p$ enjoying the mixed-range assumption, from its linear measurements $Y=X\beta^*\in\mathbb{R}^n$ for a large class of distributions for the random entries of $X$, even with one measurement ($n=1$). In the noisy setting, we propose a polynomial-time, lattice-based algorithm, which recovers a $\beta^*\in\mathbb{R}^p$ enjoying the $Q-$rationality property, from its noisy measurements $Y=X\beta^*+W\in\mathbb{R}^n$, even from a single sample ($n=1$). We further establish that for large $Q$, and normal noise, this algorithm tolerates information-theoretically optimal level of noise. We then apply these ideas to develop a polynomial-time, single-sample algorithm for the phase retrieval problem. Our methods address the single-sample ($n=1$) regime, where the sparsity-based methods such as the Least Absolute Shrinkage and Selection Operator (LASSO) and the Basis Pursuit are known to fail. Furthermore, our results also reveal algorithmic connections between the high-dimensional linear regression problem, and the integer relation detection, randomized subset-sum, and shortest vector problems.  more » « less
Award ID(s):
2022448
NSF-PAR ID:
10343454
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE transactions on information theory
ISSN:
1557-9654
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the sparsity of the solutions to systems of linear Diophantine equations with and without non-negativity constraints. The sparsity of a solution vector is the number of its nonzero entries, which is referred to as the$$\ell _0$$0-norm of the vector. Our main results are new improved bounds on the minimal$$\ell _0$$0-norm of solutions to systems$$A\varvec{x}=\varvec{b}$$Ax=b, where$$A\in \mathbb {Z}^{m\times n}$$AZm×n,$${\varvec{b}}\in \mathbb {Z}^m$$bZmand$$\varvec{x}$$xis either a general integer vector (lattice case) or a non-negative integer vector (semigroup case). In certain cases, we give polynomial time algorithms for computing solutions with$$\ell _0$$0-norm satisfying the obtained bounds. We show that our bounds are tight. Our bounds can be seen as functions naturally generalizing the rank of a matrix over$$\mathbb {R}$$R, to other subdomains such as$$\mathbb {Z}$$Z. We show that these new rank-like functions are all NP-hard to compute in general, but polynomial-time computable for fixed number of variables.

     
    more » « less
  2. Abstract

    We study the problem of estimating a $k$-sparse signal ${\boldsymbol \beta }_{0}\in{\mathbb{R}}^{p}$ from a set of noisy observations $\mathbf{y}\in{\mathbb{R}}^{n}$ under the model $\mathbf{y}=\mathbf{X}{\boldsymbol \beta }+w$, where $\mathbf{X}\in{\mathbb{R}}^{n\times p}$ is the measurement matrix the row of which is drawn from distribution $N(0,{\boldsymbol \varSigma })$. We consider the class of $L_{q}$-regularized least squares (LQLS) given by the formulation $\hat{{\boldsymbol \beta }}(\lambda )=\text{argmin}_{{\boldsymbol \beta }\in{\mathbb{R}}^{p}}\frac{1}{2}\|\mathbf{y}-\mathbf{X}{\boldsymbol \beta }\|^{2}_{2}+\lambda \|{\boldsymbol \beta }\|_{q}^{q}$, where $\|\cdot \|_{q}$  $(0\le q\le 2)$ denotes the $L_{q}$-norm. In the setting $p,n,k\rightarrow \infty $ with fixed $k/p=\epsilon $ and $n/p=\delta $, we derive the asymptotic risk of $\hat{{\boldsymbol \beta }}(\lambda )$ for arbitrary covariance matrix ${\boldsymbol \varSigma }$ that generalizes the existing results for standard Gaussian design, i.e. $X_{ij}\overset{i.i.d}{\sim }N(0,1)$. The results were derived from the non-rigorous replica method. We perform a higher-order analysis for LQLS in the small-error regime in which the first dominant term can be used to determine the phase transition behavior of LQLS. Our results show that the first dominant term does not depend on the covariance structure of ${\boldsymbol \varSigma }$ in the cases $0\le q\lt 1$ and $1\lt q\le 2,$ which indicates that the correlations among predictors only affect the phase transition curve in the case $q=1$ a.k.a. LASSO. To study the influence of the covariance structure of ${\boldsymbol \varSigma }$ on the performance of LQLS in the cases $0\le q\lt 1$ and $1\lt q\le 2$, we derive the explicit formulas for the second dominant term in the expansion of the asymptotic risk in terms of small error. Extensive computational experiments confirm that our analytical predictions are consistent with numerical results.

     
    more » « less
  3. We study the bit complexity of two related fundamental computational problems in linear algebra and control theory. Our results are: (1) An Õ(n^{ω+3}a+n⁴a²+n^ωlog(1/ε)) time algorithm for finding an ε-approximation to the Jordan Normal form of an integer matrix with a-bit entries, where ω is the exponent of matrix multiplication. (2) An Õ(n⁶d⁶a+n⁴d⁴a²+n³d³log(1/ε)) time algorithm for ε-approximately computing the spectral factorization P(x) = Q^*(x)Q(x) of a given monic n× n rational matrix polynomial of degree 2d with rational a-bit coefficients having a-bit common denominators, which satisfies P(x)⪰0 for all real x. The first algorithm is used as a subroutine in the second one. Despite its being of central importance, polynomial complexity bounds were not previously known for spectral factorization, and for Jordan form the best previous best running time was an unspecified polynomial in n of degree at least twelve [Cai, 1994]. Our algorithms are simple and judiciously combine techniques from numerical and symbolic computation, yielding significant advantages over either approach by itself. 
    more » « less
  4. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less
  5. Abstract We study the extent to which divisors of a typical integer n are concentrated. In particular, defining $$\Delta (n) := \max _t \# \{d | n, \log d \in [t,t+1]\}$$ Δ ( n ) : = max t # { d | n , log d ∈ [ t , t + 1 ] } , we show that $$\Delta (n) \geqslant (\log \log n)^{0.35332277\ldots }$$ Δ ( n ) ⩾ ( log log n ) 0.35332277 … for almost all n , a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for the concentration of divisors of a random permutation and of a random polynomial over a finite field. Most of the paper is devoted to a study of the following much more combinatorial problem of independent interest. Pick a random set $${\textbf{A}} \subset {\mathbb {N}}$$ A ⊂ N by selecting i to lie in $${\textbf{A}}$$ A with probability 1/ i . What is the supremum of all exponents $$\beta _k$$ β k such that, almost surely as $$D \rightarrow \infty $$ D → ∞ , some integer is the sum of elements of $${\textbf{A}} \cap [D^{\beta _k}, D]$$ A ∩ [ D β k , D ] in k different ways? We characterise $$\beta _k$$ β k as the solution to a certain optimisation problem over measures on the discrete cube $$\{0,1\}^k$$ { 0 , 1 } k , and obtain lower bounds for $$\beta _k$$ β k which we believe to be asymptotically sharp. 
    more » « less