skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Scoping Review of Assistance and Therapy with Head-Mounted Displays for People Who Are Visually Impaired
Given the inherent visual affordances of Head-Mounted Displays (HMDs) used for Virtual and Augmented Reality (VR/AR), they have been actively used over many years as assistive and therapeutic devices for the people who are visually impaired. In this paper, we report on a scoping review of literature describing the use of HMDs in these areas. Our high-level objectives included detailed reviews and quantitative analyses of the literature, and the development of insights related to emerging trends and future research directions. Our review began with a pool of 1251 papers collected through a variety of mechanisms. Through a structured screening process, we identified 61 English research papers employing HMDs to enhance the visual sense of people with visual impairments for more detailed analyses. Our analyses reveal that there is an increasing amount of HMD-based research on visual assistance and therapy, and there are trends in the approaches associated with the research objectives. For example, AR is most often used for visual assistive purposes, whereas VR is used for therapeutic purposes. We report on eight existing survey papers, and present detailed analyses of the 61 research papers, looking at the mitigation objectives of the researchers (assistive versus therapeutic), the approaches used, the types of HMDs, the targeted visual conditions, and the inclusion of user studies. In addition to our detailed reviews and analyses of the various characteristics, we present observations related to apparent emerging trends and future research directions.  more » « less
Award ID(s):
1800961 1564065
PAR ID:
10343483
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Accessible Computing
ISSN:
1936-7228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ballin, Daniel; Macredie, Robert D (Ed.)
    The use of multimodal data allows excellent opportunities for human–computer interaction research and novel techniques regarding virtual and augmented reality (VR/AR) experiences. Collecting, coordinating, and synchronizing a large amount of data from multiple VR/AR hardware while maintaining a high framerate can be a daunting task, despite the compelling nature of multimodal data. The Lab Streaming Layer (LSL) is an open-source framework that enables the synchronous collection of various types of multimodal data, unlike existing expensive alternatives. However, despite its potential, this framework has not been fully adopted by the VR/AR research community. In this paper, we present a guideline of the LSL framework’s use in VR/AR research as well as report current trends by performing a comprehensive literature review on the subject. We extract 549 publications using LSL from January 2015 to March 2022. We analyze types of data, displays, and targeted application areas. We describe in-depth reviews of 38 selected papers and provide use of LSL in the VR/AR research community while highlighting benefits, challenges, and future opportunities. 
    more » « less
  2. This literature review examines the existing research into cybersickness reduction with regards to head mounted display use. Cybersickness refers to a collection of negative symptoms sometimes experienced as the result of being immersed in a virtual environment, such as nausea, dizziness, or eye strain. These symptoms can prevent individuals from utilizing virtual reality (VR) technologies, so discovering new methods of reducing them is critical. Our objective in this literature review is to provide a better picture of what cybersickness reduction techniques exist, the quantity of research demonstrating their effectiveness, and the virtual scenes testing has taken place in. This will help to direct researches towards promising avenues, and illuminate gaps in the literature. Following the preferred reporting items for systematic reviews and meta-analyses statement, we obtained a batch of 1,055 papers through the use of software aids. We selected 88 papers that examine potential cybersickness reduction approaches. Our acceptance criteria required that papers examined malleable conditions that could be conceivably modified for everyday use, examined techniques in conjunction with head mounted displays, and compared cybersickness levels between two or more user conditions. These papers were sorted into categories based on their general approach to combating cybersickness, and labeled based on the presence of statistically significant results, the use of virtual vehicles, the level of visual realism, and the virtual scene contents used in evaluation of their effectiveness. In doing this we have created a snapshot of the literature to date so that researchers may better understand what approaches are being researched, and the types of virtual experiences used in their evaluation. Keywords: Virtual reality cybersickness Simulator Sickness Visually induced motion sickness reduction Systematic review Head mounted display. 
    more » « less
  3. null (Ed.)
    There is a significant amount of synergy between virtual reality (VR) and the field of robotics. However, it has only been in approximately the past five years that commercial immersive VR devices have been available to developers. This new availability has led to a rapid increase in research using VR devices in the field of robotics, especially in the development of VR interfaces for operating robots. In this paper, we present a systematic review on VR interfaces for robot operation that utilize commercially available immersive VR devices. A total of 41 papers published between 2016–2020 were collected for review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Papers are discussed and categorized into five categories: (1) Visualization, which focuses on displaying data or information to operators; (2) Robot Control and Planning, which focuses on connecting human input or movement to robot movement; (3) Interaction, which focuses on the development of new interaction techniques and/or identifying best interaction practices; (4) Usability, which focuses on user experiences of VR interfaces; and (5) Infrastructure, which focuses on system architectures or software to support connecting VR and robots for interface development. Additionally, we provide future directions to continue development in VR interfaces for operating robots. 
    more » « less
  4. Immersive Analytics (IA) and consumer adoption of augmented reality (AR) and virtual reality (VR) head-mounted displays (HMDs) are both rapidly growing. When used in conjunction, stereoscopic IA environments can offer improved user understanding and engagement; however, it is unclear how the choice of stereoscopic display impacts user interactions within an IA environment. This paper presents a pilot study that examines the impact of stereoscopic display choice on object manipulation and environmental navigation using consumeravailable AR and VR HMDs. Our observations indicate that the display can impact how users manipulate virtual content and how they navigate the environment. 
    more » « less
  5. More than 1 billion people in the world are estimated to experience significant disability. These disabilities can impact people's ability to independently conduct activities of daily living, including ambulating, eating, dressing, taking care of personal hygiene, and more. Mobile and manipulator robots, which can move about human environments and physically interact with objects and people, have the potential to assist people with disabilities in activities of daily living. Although the vision of physically assistive robots has motivated research across subfields of robotics for decades, such robots have only recently become feasible in terms of capabilities, safety, and price. More and more research involves end-to-end robotic systems that interact with people with disabilities in real-world settings. In this article, we survey papers about physically assistive robots intended for people with disabilities from top conferences and journals in robotics, human–computer interactions, and accessible technology, to identify the general trends and research methodologies. We then dive into three specific research themes—interaction interfaces, levels of autonomy, and adaptation—and present frameworks for how these themes manifest across physically assistive robot research. We conclude with directions for future research. 
    more » « less