skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on October 1, 2024

Title: A scoping review of the use of lab streaming layer framework in virtual and augmented reality research
The use of multimodal data allows excellent opportunities for human–computer interaction research and novel techniques regarding virtual and augmented reality (VR/AR) experiences. Collecting, coordinating, and synchronizing a large amount of data from multiple VR/AR hardware while maintaining a high framerate can be a daunting task, despite the compelling nature of multimodal data. The Lab Streaming Layer (LSL) is an open-source framework that enables the synchronous collection of various types of multimodal data, unlike existing expensive alternatives. However, despite its potential, this framework has not been fully adopted by the VR/AR research community. In this paper, we present a guideline of the LSL framework’s use in VR/AR research as well as report current trends by performing a comprehensive literature review on the subject. We extract 549 publications using LSL from January 2015 to March 2022. We analyze types of data, displays, and targeted application areas. We describe in-depth reviews of 38 selected papers and provide use of LSL in the VR/AR research community while highlighting benefits, challenges, and future opportunities.  more » « less
Award ID(s):
Author(s) / Creator(s):
Daniel Ballin, Robert D
Date Published:
Journal Name:
Virtual reality
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Drivers gather most of the information they need to drive by looking at the world around them and at visual displays within the vehicle. Navigation systems automate the way drivers navigate. In using these systems, drivers offload both tactical (route following) and strategic aspects (route planning) of navigational tasks to the automated SatNav system, freeing up cognitive and attentional resources that can be used in other tasks (Burnett, 2009). Despite the potential benefits and opportunities that navigation systems provide, their use can also be problematic. For example, research suggests that drivers using SatNav do not develop as much environmental spatial knowledge as drivers using paper maps (Waters & Winter, 2011; Parush, Ahuvia, & Erev, 2007). With recent growth and advances of augmented reality (AR) head-up displays (HUDs), there are new opportunities to display navigation information directly within a driver’s forward field of view, allowing them to gather information needed to navigate without looking away from the road. While the technology is promising, the nuances of interface design and its impacts on drivers must be further understood before AR can be widely and safely incorporated into vehicles. Specifically, an impact that warrants investigation is the role of AR HUDS in spatial knowledge acquisition while driving. Acquiring high levels of spatial knowledge is crucial for navigation tasks because individuals who have greater levels of spatial knowledge acquisition are more capable of navigating based on their own internal knowledge (Bolton, Burnett, & Large, 2015). Moreover, the ability to develop an accurate and comprehensive cognitive map acts as a social function in which individuals are able to navigate for others, provide verbal directions and sketch direction maps (Hill, 1987). Given these points, the relationship between spatial knowledge acquisition and novel technologies such as AR HUDs in driving is a relevant topic for investigation. Objectives: This work explored whether providing conformal AR navigational cues improves spatial knowledge acquisition (as compared to traditional HUD visual cues) to assess the plausibility and justification for investment in generating larger FOV AR HUDs with potentially multiple focal planes. Methods: This study employed a 2x2 between-subjects design in which twenty-four participants were counterbalanced by gender. We used a fixed base, medium fidelity driving simulator for where participants drove while navigating with one of two possible HUD interface designs: a world-relative arrow post sign and a screen-relative traditional arrow. During the 10-15 minute drive, participants drove the route and were encouraged to verbally share feedback as they proceeded. After the drive, participants completed a NASA-TLX questionnaire to record their perceived workload. We measured spatial knowledge at two levels: landmark and route knowledge. Landmark knowledge was assessed using an iconic recognition task, while route knowledge was assessed using a scene ordering task. After completion of the study, individuals signed a post-trial consent form and were compensated $10 for their time. Results: NASA-TLX performance subscale ratings revealed that participants felt that they performed better during the world-relative condition but at a higher rate of perceived workload. However, in terms of perceived workload, results suggest there is no significant difference between interface design conditions. Landmark knowledge results suggest that the mean number of remembered scenes among both conditions is statistically similar, indicating participants using both interface designs remembered the same proportion of on-route scenes. Deviance analysis show that only maneuver direction had an influence on landmark knowledge testing performance. Route knowledge results suggest that the proportion of scenes on-route which were correctly sequenced by participants is similar under both conditions. Finally, participants exhibited poorer performance in the route knowledge task as compared to landmark knowledge task (independent of HUD interface design). Conclusions: This study described a driving simulator study which evaluated the head-up provision of two types of AR navigation interface designs. The world-relative condition placed an artificial post sign at the corner of an approaching intersection containing a real landmark. The screen-relative condition displayed turn directions using a screen-fixed traditional arrow located directly ahead of the participant on the right or left side on the HUD. Overall results of this initial study provide evidence that the use of both screen-relative and world-relative AR head-up display interfaces have similar impact on spatial knowledge acquisition and perceived workload while driving. These results contrast a common perspective in the AR community that conformal, world-relative graphics are inherently more effective. This study instead suggests that simple, screen-fixed designs may indeed be effective in certain contexts. 
    more » « less
  2. All life on earth is linked by a shared evolutionary history. Even before Darwin developed the theory of evolution, Linnaeus categorized types of organisms based on their shared traits. We now know these traits derived from these species’ shared ancestry. This evolutionary history provides a natural framework to harness the enormous quantities of biological data being generated today. The Open Tree of Life project is a collaboration developing tools to curate and share evolutionary estimates (phylogenies) covering the entire tree of life (Hinchliff et al. 2015, McTavish et al. 2017). The tree is viewable at, and the data is all freely available online. The taxon identifiers used in the Open Tree unified taxonomy (Rees and Cranston 2017) are mapped to identifiers across biological informatics databases, including the Global Biodiversity Information Facility (GBIF), NCBI, and others. Linking these identifiers allows researchers to easily unify data from across these different resources (Fig. 1). Leveraging a unified evolutionary framework across the diversity of life provides new avenues for integrative wide scale research. Downstream tools, such as R packages developed by the R OpenSci foundation (rotl, rgbif) (Michonneau et al. 2016, Chamberlain 2017) and others tools (Revell 2012), make accessing and combining this information straightforward for students as well as researchers (e.g. Figure 1. Example linking phylogenetic relationships accessed from the Open Tree of Life with specimen location data from Global Biodiversity Information Facility. For example, a recent publication by Santorelli et al. 2018 linked evolutionary information from Open Tree with species locality data gathered from a local field study as well as GBIF species location records to test a river-barrier hypothesis in the Amazon. By combining these data, the authors were able test a widely held biogeographic hypothesis across 1952 species in 14 taxonomic groups, and found that a river that had been postulated to drive endemism, was in fact not a barrier to gene flow. However, data provenance and taxonomic name reconciliation remain key hurdles to applying data from these large digital biodiversity and evolution community resources to answering biological questions. In the Amazonian river analysis, while they leveraged use of GBIF records as a secondary check on their species records, they relied on their an intensive local field study for their major conclusions, and preferred taxon specific phylogenetic resources over Open Tree where they were available (Santorelli et al. 2018). When Li et al. 2018 assessed large scale phylogenetic approaches, including Open Tree, for measuring community diversity, they found that synthesis phylogenies were less resolved than purpose-built phylogenies, but also found that these synthetic phylogenies were sufficient for community level phylogenetic diversity analyses. Nonetheless, data quality concerns have limited adoption of analyses data from centralized resources (McTavish et al. 2017). Taxonomic name recognition and reconciliation across databases also remains a hurdle for large scale analyses, despite several ongoing efforts to improve taxonomic interoperability and unify taxonomies, such at Catalogue of Life + (Bánki et al. 2018). In order to support innovative science, large scale digital data resources need to facilitate data linkage between resources, and address researchers' data quality and provenance concerns. I will present the model that the Open Tree of Life is using to provide evolutionary data at the scale of the entire tree of life, while maintaining traceable provenance to the publications and taxonomies these evolutionary relationships are inferred from. I will discuss the hurdles to adoption of these large scale resources by researchers, as well as the opportunities for new research avenues provided by the connections between evolutionary inferences and biodiversity digital databases. 
    more » « less
  3. Stephanidis C., Antona M. (Ed.)
    The objective of this study is to develop and use a virtual reality game as a tool to assess the effects of realistic stress on the behavioral and physiological responses of participants. The game is based on a popular Steam game called Keep Talking Nobody Explodes, where the players collaborate to defuse a bomb. Varying levels of difficulties in solving a puzzle and time pressures will result in different stress levels that can be measured in terms of errors, response times, and other physiological measurements. The game was developed using 3D programming tools including Blender and a virtual reality development kit (VRTK). To measure response times accurately, we added LSL (Lab Stream Layer) Markers to collect and synchronize physiological signals, behavioral data, and the timing of game events. We recorded Electrocardiogram (ECG) data during gameplay to assess heart rate and heart-rate variability (HRV) that have been shown as reliable indicators of stress. Our empirical results showed that heart rate increased significantly while HRV reduced significantly when the participants under high stress, which are consistent with the prior mainstream stress research. This VR game framework is publicly available in GitHub and allows researchers to measure and synchronize other physiological signals such as electroencephalogram, electromyogram, and pupillometry. 
    more » « less
  4. Immersive Learning Environments (ILEs) developed in Virtual and Augmented Reality (VR/AR) are a novel pro- fessional training platform. An ILE can facilitate an Adaptive Learning System (ALS), which has proven beneficial to the learning process. However, there is no existing AI-ready ILE that facilitates collecting multimedia multimodal data from the environment and users for training AI models, nor allows for the learning contents and complex learning process to be dynamically adapted by an ALS. This paper proposes a novel multimedia system in VR/AR to dynamically build ILEs for a wide range of use-cases, based on a description language for the generalizable ILE structure. It will detail users’ paths and conditions for completing learning activities, and a content adaptation algorithm to update the ILE at runtime. Human and AI systems can customize the environment based on user learning metrics. Results show that this framework is efficient and low- overhead, suggesting a path to simplifying and democratizing the ILE development without introducing bloat. Index Terms—virtual reality, augmented reality, content generation, immersive learning, 3D environments 
    more » « less
  5. Eye tracking has become an essential human-machine interaction modality for providing immersive experience in numerous virtual and augmented reality (VR/AR) applications desiring high throughput (e.g., 240 FPS), small-form, and enhanced visual privacy. However, existing eye tracking systems are still limited by their: (1) large form-factor largely due to the adopted bulky lens-based cameras; (2) high communication cost required between the camera and backend processor; and (3) potentially concerned low visual privacy, thus prohibiting their more extensive applications. To this end, we propose, develop, and validate a lensless FlatCambased eye tracking algorithm and accelerator co-design framework dubbed EyeCoD to enable eye tracking systems with a much reduced form-factor and boosted system efficiency without sacrificing the tracking accuracy, paving the way for next-generation eye tracking solutions. On the system level, we advocate the use of lensless FlatCams instead of lens-based cameras to facilitate the small form-factor need in mobile eye tracking systems, which also leaves rooms for a dedicated sensing-processor co-design to reduce the required camera-processor communication latency. On the algorithm level, EyeCoD integrates a predict-then-focus pipeline that first predicts the region-of-interest (ROI) via segmentation and then only focuses on the ROI parts to estimate gaze directions, greatly reducing redundant computations and data movements. On the hardware level, we further develop a dedicated accelerator that (1) integrates a novel workload orchestration between the aforementioned segmentation and gaze estimation models, (2) leverages intra-channel reuse opportunities for depth-wise layers, (3) utilizes input feature-wise partition to save activation memory size, and (4) develops a sequential-write-parallel-read input buffer to alleviate the bandwidth requirement for the activation global buffer. On-silicon measurement and extensive experiments validate that our EyeCoD consistently reduces both the communication and computation costs, leading to an overall system speedup of 10.95×, 3.21×, and 12.85× over general computing platforms including CPUs and GPUs, and a prior-art eye tracking processor called CIS-GEP, respectively, while maintaining the tracking accuracy. Codes are available at 
    more » « less