skip to main content


Title: Experimental Exploration of Objective Human Pain Assessment Using Multimodal Sensing Signals
Optimization of pain assessment and treatment is an active area of research in healthcare. The purpose of this research is to create an objective pain intensity estimation system based on multimodal sensing signals through experimental studies. Twenty eight healthy subjects were recruited at Northeastern University. Nine physiological modalities were utilized in this research, namely facial expressions (FE), electroencephalography (EEG), eye movement (EM), skin conductance (SC), and blood volume pulse (BVP), electromyography (EMG), respiration rate (RR), skin temperature (ST), blood pressure (BP). Statistical analysis and machine learning algorithms were deployed to analyze the physiological data. FE, EEG, SC, BVP, and BP proved to be able to detect different pain states from healthy subjects. Multi-modalities proved to be promising in detecting different levels of painful states. A decision-level multi-modal fusion also proved to be efficient and accurate in classifying painful states.  more » « less
Award ID(s):
1838796 1838621
NSF-PAR ID:
10343698
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Neuroscience
Volume:
16
ISSN:
1662-453X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In an attempt to understand human physiological signals when an individual is subjected to pain, we set up a tonic pain experiment in a laboratory setting. The subjects’ physiological signals were recorded, timestamped, and compared to an initial 30 second baseline measurement. Subjects were also asked to verbally state their level of pain based on a visual analog scale in order to compare reported pain levels with physiological signals. The physiological signals measured were: Electroencephalography (EEG), Pupillary Unrest Under Ambient Light (PUAL), Skin Conductance (SC), Electromyography (EMG), Respiration Rate (RR), Blood Volume Pulse (BVP), Skin Temperature (ST), Blood Pressure (BP), and Facial Expression (FE). ANOVA and frequency domain analyses were conducted on the data in order to determine whether there was a significant difference between the ‘pain’ and ‘no pain’ (baseline) states of an individual. Based on our results, skin conductance, PUAL, facial expression, and EEG signals were theorized to be good signals for the classification of tonic pain, or any pain applied directly to an individual.

     
    more » « less
  2. Objective: Accurate implementation of real-time non-invasive Brain-Machine / Computer Interfaces (BMI / BCI) requires handling physiological and non-physiological artifacts associated with the measurement modalities. For example, scalp electroencephalographic (EEG) measurements are often considered prone to excessive motion artifacts and other types of artifacts that contaminate the EEG recordings. Although the magnitude of such artifacts heavily depends on the task and the setup, complete minimization or isolation of such artifacts is generally not possible. Approach: We present an adaptive de-noising framework with robustness properties, using a Volterra based non-linear mapping to characterize and handle the motion artifact contamination in EEG measurements. We asked healthy able-bodied subjects to walk on a treadmill at gait speeds of 1-to-4 mph, while we tracked the motion of select EEG electrodes with an infrared video-based motion tracking system. We also placed Inertial Measurement Unit (IMU) sensors on the forehead and feet of the subjects for assessing the overall head movement and segmenting the gait. Main Results: We discuss in detail the characteristics of the motion artifacts and propose a real-time compatible solution to filter them. We report the effective handling of both the fundamental frequency of contamination (synchronized to the walking speed) and its harmonics. Event-Related Spectral Perturbation (ERSP) analysis for walking shows that the gait dependency of artifact contamination is also eliminated on all target frequencies. Significance: The real-time compatibility and generalizability of our adaptive filtering framework allows for the effective use of non-invasive BMI/BCI systems and greatly expands the implementation type and application domains to other types of problems where signal denoising is desirable. Combined with our previous efforts of filtering ocular artifacts, the presented technique allows for a comprehensive adaptive filtering framework to increase the EEG Signal to Noise Ratio (SNR). We believe the implementation will benefit all non-invasive neural measurement modalities, including studies discussing neural correlates of movement and other internal states, not necessarily of BMI focus. 
    more » « less
  3. null (Ed.)
    We have tested the feasibility of thermal grills, a harmless method to induce pain. The thermal grills consist of interlaced tubes that are set at cool or warm temperatures, creating a painful “illusion” (no tissue injury is caused) in the brain when the cool and warm stimuli are presented collectively. Advancement in objective pain assessment research is limited because the gold standard, the self-reporting pain scale, is highly subjective and only works for alert and cooperative patients. However, the main difficulty for pain studies is the potential harm caused to participants. We have recruited 23 subjects in whom we induced electric pulses and thermal grill (TG) stimulation. The TG effectively induced three different levels of pain, as evidenced by the visual analog scale (VAS) provided by the subjects after each stimulus. Furthermore, objective physiological measurements based on electrodermal activity showed a significant increase in levels as stimulation level increased. We found that VAS was highly correlated with the TG stimulation level. The TG stimulation safely elicited pain levels up to 9 out of 10. The TG stimulation allows for extending studies of pain to ranges of pain in which other stimuli are harmful. 
    more » « less
  4. Abstract

    Objective.Reorienting is central to how humans direct attention to different stimuli in their environment. Previous studies typically employ well-controlled paradigms with limited eye and head movements to study the neural and physiological processes underlying attention reorienting. Here, we aim to better understand the relationship between gaze and attention reorienting using a naturalistic virtual reality (VR)-based target detection paradigm.Approach.Subjects were navigated through a city and instructed to count the number of targets that appeared on the street. Subjects performed the task in a fixed condition with no head movement and in a free condition where head movements were allowed. Electroencephalography (EEG), gaze and pupil data were collected. To investigate how neural and physiological reorienting signals are distributed across different gaze events, we used hierarchical discriminant component analysis (HDCA) to identify EEG and pupil-based discriminating components. Mixed-effects general linear models (GLM) were used to determine the correlation between these discriminating components and the different gaze events time. HDCA was also used to combine EEG, pupil and dwell time signals to classify reorienting events.Main results.In both EEG and pupil, dwell time contributes most significantly to the reorienting signals. However, when dwell times were orthogonalized against other gaze events, the distributions of the reorienting signals were different across the two modalities, with EEG reorienting signals leading that of the pupil reorienting signals. We also found that the hybrid classifier that integrates EEG, pupil and dwell time features detects the reorienting signals in both the fixed (AUC = 0.79) and the free (AUC = 0.77) condition.Significance.We show that the neural and ocular reorienting signals are distributed differently across gaze events when a subject is immersed in VR, but nevertheless can be captured and integrated to classify target vs. distractor objects to which the human subject orients.

     
    more » « less
  5. Unique characteristics of the naked mole-rat (NMR) have made it increasingly popular as a laboratory animal model. These rodents are used to study many fields of research including longevity and aging, cancer, circadian rhythm, pain, and metabolism. Currently, the analgesic dosing regimens used in the NMR mirror those used in other rodent species. However, there is no pharmacokinetic (PK) data supporting the use of injectable analgesics in the NMR. Therefore, we conducted two independent PK studies to evaluate two commonly used analgesics in the NMR; meloxicam (2 mg/kg SC) and buprenorphine (0.1 mg/kg SC). In each study, blood was collected at 8 time points after subcutaneous injection of meloxicam or buprenorphine (0 (pre-dose), 0.25, 0.5, 1, 2, 4, 8, and 24 hrs). Three NMRs were used per time point for a total of 24 animals per PK study. Plasma concentrations of meloxicam were highest between 0.5 hrs and 1 hr post-injection. Levels remained above the extrapolated dog and cat therapeutic threshold levels (390-911 ng/mL) for at least 24 hrs. Plasma concentrations of buprenorphine were highest between 0.25 and 0.5 hrs post-injection. Levels remained above the human therapeutic threshold (1 ng/mL) for up to 21 hrs. No skin reactions were seen in association with injection of either drug. In summary, this data supports dosing meloxicam (2 mg/kg SC) once every 24 hrs and buprenorphine (0.1 mg/kg SC) once every 8-12 hrs in the NMR. Further studies should be performed to evaluate the clinical efficacy of these drugs by correlating plasma concentrations with post-operative pain assessments. 
    more » « less