This study elucidates the conformation dynamics of the free and antigen-bound antibody. Previous work has verified that antigen binding allosterically promotes Fc receptor recognition. Analysis of extensive molecular dynamics simulations finds that the energy landscape may play a decisive role in coordinating conformation changes but does not provide connections between the various conformational states. Here we provide such a connection. To obtain a detailed understanding of the impact of antigen binding on antibody conformation dynamics, this study utilizes Markov State Models to summarize the conformation dynamics probed in silico. We additionally equip these models with the ability to directly exploit the energy landscape view of dynamics via a computational method that detects energy basins and so allows utilizing detected basins as macrostates for the Markov State Model. Our study reveals many interesting findings and suggests that the antigen-bound form with high energy may provide many dynamic processes to further enhance co-factor binding of the antibody in the next step.
more »
« less
Fewer Dimensions, More Structures for Improved Discrete Models of Dynamics of Free versus Antigen-Bound Antibody
Over the past decade, Markov State Models (MSM) have emerged as powerful methodologies to build discrete models of dynamics over structures obtained from Molecular Dynamics trajectories. The identification of macrostates for the MSM is a central decision that impacts the quality of the MSM but depends on both the selected representation of a structure and the clustering algorithm utilized over the featurized structures. Motivated by a large molecular system in its free and bound state, this paper investigates two directions of research, further reducing the representation dimensionality in a non-parametric, data-driven manner and including more structures in the computation. Rigorous evaluation of the quality of obtained MSMs via various statistical tests in a comparative setting firmly shows that fewer dimensions and more structures result in a better MSM. Many interesting findings emerge from the best MSM, advancing our understanding of the relationship between antibody dynamics and antibody–antigen recognition.
more »
« less
- Award ID(s):
- 1900061
- PAR ID:
- 10343768
- Date Published:
- Journal Name:
- Biomolecules
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2218-273X
- Page Range / eLocation ID:
- 1011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Protein–protein binding is fundamental to most biological processes. It is important to be able to use computation to accurately estimate the change in protein–protein binding free energy due to mutations in order to answer biological questions that would be experimentally challenging, laborious, or time-consuming. Although nonrigorous free-energy methods are faster, rigorous alchemical molecular dynamics-based methods are considerably more accurate and are becoming more feasible with the advancement of computer hardware and molecular simulation software. Even with sufficient computational resources, there are still major challenges to using alchemical free-energy methods for protein–protein complexes, such as generating hybrid structures and topologies, maintaining a neutral net charge of the system when there is a charge-changing mutation, and setting up the simulation. In the current study, we have used the pmx package to generate hybrid structures and topologies, and a double-system/single-box approach to maintain the net charge of the system. To test the approach, we predicted relative binding affinities for two protein–protein complexes using a nonequilibrium alchemical method based on the Crooks fluctuation theorem and compared the results with experimental values. The method correctly identified stabilizing from destabilizing mutations for a small protein–protein complex, and a larger, more challenging antibody complex. Strong correlations were obtained between predicted and experimental relative binding affinities for both protein–protein systems.more » « less
-
Computational modeling of assembly is challenging for many systems, because their timescales can vastly exceed those accessible to simulations. This article describes the multiMSM, which is a general framework that uses Markov state models (MSMs) to enable simulating self-assembly and self-organization of finite-sized structures on timescales that are orders of magnitude longer than those accessible to brute-force dynamics simulations. As with traditional MSM approaches, the method efficiently overcomes free energy barriers and other dynamical bottlenecks. In contrast to previous MSM approaches to simulating assembly, the framework describes simultaneous assembly of many clusters and the consequent depletion of free subunits or other small oligomers. The algorithm accounts for changes in transition rates as concentrations of monomers and intermediates evolve over the course of the reaction. Using two model systems, we show that the multiMSM accurately predicts the concentrations of the full ensemble of intermediates on timescales required to reach equilibrium. Importantly, after constructing a multiMSM for one system concentration, yields at other concentrations can be approximately calculated without any further sampling. This capability allows for orders of magnitude additional speedup. In addition, the method enables highly efficient calculation of quantities such as free energy profiles, nucleation timescales, flux along the ensemble of assembly pathways, and entropy production rates. Identifying contributions of individual transitions to entropy production rates reveals sources of kinetic traps. The method is broadly applicable to systems with equilibrium or nonequilibrium dynamics and is trivially parallelizable and, thus, highly scalable. Published by the American Physical Society2024more » « less
-
Accurate modeling of the response of molecular systems to an external electromagnetic field is challenging on classical computers, especially in the regime of strong electronic correlation. In this article, we develop a quantum linear response (qLR) theory to calculate molecular response properties on near-term quantum computers. Inspired by the recently developed variants of the quantum counterpart of equation of motion (qEOM) theory, the qLR formalism employs “killer condition” satisfying excitation operator manifolds that offer a number of theoretical advantages along with reduced quantum resource requirements. We also used the qEOM framework in this work to calculate the state-specific response properties. Further, through noiseless quantum simulations, we show that response properties calculated using the qLR approach are more accurate than the ones obtained from the classical coupled-cluster-based linear response models due to the improved quality of the ground-state wave function obtained using the ADAPT-VQE algorithm.more » « less
-
The accurate prediction of suitable chiral stationary phases (CSPs) for resolving the enantiomers of a given compound poses a significant challenge in chiral chromatography. Previous attempts at developing machine learning models for structure-based CSP prediction have primarily relied on 1D SMILES strings\footnote{The simplified molecular-input line-entry system (SMILES) is a specification in the form of a line notation for describing the structure of chemical species using short ASCII strings.} or 2D graphical representations of molecular structures, and have met with only limited success. In this study, we apply the recently developed 3D molecular conformation representation learning algorithm, which uses rapid conformational analysis and point clouds of atom positions in 3D space, enabling efficient chemical structure-based machine learning. By harnessing the power of the rapid 3D molecular representation learning and a dataset comprising over 300,000 chromatographic enantioseparation records sourced from the literature, our models afford notable improvements for the chemical structure-based choice of appropriate CSP for enantioseparation, paving the way for more efficient and informed decision-making in the field of chiral chromatography.more » « less
An official website of the United States government

