skip to main content

Title: WySLICE - Integrating Computer Science throughout Existing K-12 Core Disciplinary Areas
Wyoming recently mandated that computer science instruction be provided in K-12 schools by 2022, and there is an urgent need for designing instruction that can integrate computer science into the teaching of other subjects. This project assembles a network improvement community comprised of partners from the University of Wyoming, community colleges, Wyoming school districts, the Wyoming Library System, the Wyoming Department of Education, and local software development firms. The community meets once monthly over the duration of the project to collaborate stakeholder agendas for meeting the project goals. The community enlists K-8 teachers from across the state to experience professional development and collaborate on integrating computer science into their instruction of STEM and social science topics. The project is producing units for teachers, who are implementing these units with support from master teachers and educational scholars. The community serves as a forum for teachers to debrief and learn from each other about ways to improve their instruction and design of the curricular units. Libraries in the state system act as partners for dissemination to rural areas of the innovative instructional approaches. WySLICE prepares 150 K-8 teachers and state librarians from all disciplines to integrate computer science into their teaching. The project more » is reaching almost half of all K-8 students in Wyoming. The research questions address how teachers use modeling practices as supports for student understanding of algorithms and coding in a variety of ways. The curricula involve cybersecurity as well as other topics relevant to measurement in mathematics and social studies topics that involve social concerns like voting. Data sources include teacher lesson plans and recordings of their instructional implementation, scoring of each of these according to a rubric, meeting notes of monthly meetings, and results from pre-post student assessments. The evaluation focuses on the meeting of project goals and the quality of the management of the network improvement community. This project is jointly funded by CS for All and the Established Program to Stimulate Competitive Research (EPSCoR). This work is supported by the National Science Foundation under DRL Grant #1923542 "CS For All:RPP - Booting Up Computer Science in Wyoming." « less
Authors:
; ;
Award ID(s):
1923542
Publication Date:
NSF-PAR ID:
10343803
Journal Name:
2021 ASEE Virtual Annual Conference Content Access
Sponsoring Org:
National Science Foundation
More Like this
  1. As school districts implement initiatives that bring computer science (CS) to academically diverse K-12 schools, they face heightened demands for supporting teachers in meeting the needs of a broad range of learners. However, limited knowledge exists about pedagogical approaches to teaching CS, especially to students with disabilities. This paper reports findings from a qualitative study of two CS instructional coaching models meant to support teachers in meeting the needs of diverse learners, including those with disabilities. One model involved a school-embedded coach and the other model involved a district-wide coach that traveled among multiple schools. Findings revealed that within both coaching models, co-planning and co-teaching played an integral role in supporting teachers in meeting the needs of students with disabilities. Instructional pedagogies that coaches promoted included scaffolded project planning, student collaboration, and immediate feedback to students. Within both coaching models, there was a focus on trust building and increasing teachers’ instructional skills. Differences between coaching models included a stronger level of familiarity between the coach and teachers in the school-embedded coaching. There were also different approaches to accountability and co-planning logistics.
  2. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineeringmore »and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing.« less
  3. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge.more »Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys.« less
  4. This paper presents an experience report from an NSF-funded researcher-practitioner partnership (RPP) project. Based on a collaboration among two public research universities and three urban school districts in the Northeast USA, the goal of the project is to establish an institutionalized middle school computer science curriculum in the districts. The CS curriculum incorporates digital literacy skills as an integral aspect of learning computer science, and is based on students developing mobile apps that provide social and community good. Here, we share our professional learning process during the project's first year, which had been developed iteratively and dynamically adjusted to a remote format in response to exigencies of Spring 2020. The paper includes analysis of three data sets from teacher-participants: (1) their questions about the nature of the project, which we categorized into three levels: project, district and teacher levels. These questions bridge the visions and knowledge among different groups of the project partners; (2) analysis of semi-structured interview conversations with more than half of the teacher-participants; and (3) teacher survey responses. Our findings include two recommendations: that RPP projects elicit teacher questions to illuminate the three levels identified, and use strategies that engage teachers in designing a professional learning processmore »for teaching computer science.« less
  5. Concurrent enrollment enables high school teachers approved by a partnering college or university to teach college-level coursework to their students. The collaborative research-practice partnership project CS-through-CE examines if and how concurrent enrollment (CE) programs can effectively broaden participation in computing for secondary students. In the CS-through-CE project two participating higher education institutions - Capital Community College (CCC) in Hartford, CT, and Southwest Minnesota State University (SMSU) in Marshall, MN - collaborated with the Mobile Computer Science Principles (CSP) team to train secondary teachers to teach the Mobile CSP course, and then offer the Mobile CSP course as a CE course. In this experience paper, faculty from CCC and SMSU detail their experiences recruiting secondary partners to teach Mobile CSP as a CE course, including the barriers and challenges encountered and the strategies identified for overcoming them. Additionally, participating secondary instructors from Hartford Trinity Magnet College Academy in Hartford, CT and Northeast Range School in Babbit, MN detail their experiences teaching Mobile CSP as a CE course in their high schools. They share their experiences teaching Mobile CSP as a CE course, contrast this experience to teaching the course in an Advanced Placement (AP) format, and detail the benefits they seemore »in each modality. The experiences of the college faculty and secondary instructors in this paper are informative for any secondary or post-secondary educator interested in cultivating or expanding pathways in CS through concurrent enrollment.« less