Abstract We used high-resolution spectra acquired with the Magellan Telescope to measure radial and rotational velocities of approximately 200 stars in the Galactic globular cluster NGC 3201. The surveyed sample includes blue straggler stars (BSSs) and reference stars in different evolutionary stages (main-sequence turnoff, subgiant, red giant, and asymptotic giant branches). The average radial velocity value (〈Vr〉 = 494.5 ± 0.5 km s−1) confirms a large systemic velocity for this cluster and was used to distinguish 33 residual field interlopers. The final sample of member stars has 67 BSSs and 114 reference stars. Similarly to what is found in other clusters, the totality of the reference stars has negligible rotation (< 20 km s−1), while the BSS rotational velocity distribution shows a long tail extending up to ∼200 km s−1, with 19 BSSs (out of 67) spinning faster than 40 km s−1. This sets the percentage of fast-rotating BSSs to ∼28%. Such a percentage is roughly comparable to that measured in other loose systems (ωCentauri, M4, and M55) and significantly larger than that measured in high-density clusters (as 47 Tucanae, NGC 6397, NGC 6752, and M30). This evidence supports a scenario where recent BSS formation (mainly from the evolution of binary systems) is occurring in low-density environments. We also find that the BSS rotational velocity tends to decrease for decreasing luminosity and surface temperature, similarly to what is observed in main-sequence stars. Hence, further investigations are needed to understand the impact of BSS internal structure on the observed rotational velocities.
more »
« less
A Census of Blue Stragglers in Gaia DR2 Open Clusters as a Test of Population Synthesis and Mass Transfer Physics
Abstract We use photometry and proper motions from Gaia DR2 to determine the blue straggler star (BSS) populations of 16 old (1–10 Gyr), nearby ( d < 3500 pc) open clusters. We find that the fractional number of BSS compared to red giant branch stars increases with age, starting near zero at 1 Gyr and flattening to ∼0.35 by 4 Gyr. Fitting stellar evolutionary tracks to these BSSs, we find that their mass distribution peaks at a few tenths of a solar mass above the main-sequence turnoff. BSSs more than 0.5 M ⊙ above the turnoff make up only ∼25% of the sample, and BSSs more than 1.0 M ⊙ above the turnoff are rare. We compare this to Compact Object Synthesis and Monte Carlo Investigation Code population synthesis models of BSSs formed via mass transfer. We find that standard population synthesis assumptions dramatically under-produce the number of BSS in old open clusters. We also find that these models overproduce high-mass BSSs relative to lower-mass BSSs. The expected number of BSSs formed through dynamics do not fully account for this discrepancy. We conclude that in order to explain the observed BSS populations from Roche lobe overflow, mass transfer from giant donors must be more stable than assumed in canonical mass-transfer prescriptions, and including nonconservative mass transfer is important in producing realistic BSS masses. Even with these modifications, it is difficult to achieve the large number of BSSs observed in the oldest open clusters. We discuss some additional physics that may explain the large number of observed blue stragglers among old stellar populations.
more »
« less
- Award ID(s):
- 1801937
- PAR ID:
- 10343809
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 908
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 229
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract More than half of all main-sequence (MS) stars have one or more companions, and many of those with initial masses <8M⊙are born in hierarchical triples. These systems feature two stars in a close orbit (the inner binary) while a tertiary star orbits them on a wider orbit (the outer binary). In hierarchical triples, three-body dynamics combined with stellar evolution drives interactions and, in many cases, merges the inner binary entirely to create a renovated “post-merger binary” (PMB). By leveraging dynamical simulations and tracking binary interactions, we explore the outcomes of merged triples and investigate whether PMBs preserve signatures of their three-body history. Our findings indicate that in 26%–54% of wide double white dwarf (DWD) binaries (s≳ 100 au), the more massive white dwarf (WD) is a merger product, implying that these DWD binaries were previously triples. Overall, we estimate that 44% ± 14% of observed wide DWDs originated in triple star systems and thereby have rich dynamical histories. We also examine MS+MS and MS+red giant mergers manifesting as blue straggler stars (BSSs). These PMBs have orbital configurations and ages similar to most observed BSS binaries. While the triple+merger formation channel can explain the observed chemical abundances, moderate eccentricities, and companion masses in BSS binaries, it likely only accounts for ∼20%–25% of BSSs. Meanwhile, we predict that the majority of observed single BSSs formed as collisions in triples and harbor long-period (>10 yr) companions. Furthermore, both BSS binaries and DWDs exhibit signatures of WD birth kicks.more » « less
-
Abstract The light element lithium is formed by nucleosynthesis during the Big Bang. Its abundance can help to define the parameters of the early Universe. To find this primordial value, it is necessary to determine Li abundances in the oldest stars because it is readily destroyed by nuclear reactions in stellar interiors. We have made high-resolution (∼45,000) spectroscopic observations of five identical unevolved turnoff stars in the 13 Gyr old globular cluster M5. In our analysis we find a range in Li abundance of a factor of 2; the spread is 5 times the individual error. The comparison of these results with those for turnoff stars from five other globular clusters reveals a similarly large range in Li. Lithium in M5 and the other clusters all have stars above the field star Li plateau, but none are as high as the predictions for primordial Li. The maximum values for Li are the same in all six clusters. Multiple generations of stars are found in many globular clusters; those later generations are expected to have formed from Li-depleted gas. Such second- and later-generation stars would have no Li. However, only one of the six clusters has a few unevolved stars with upper limits on the Li abundance.more » « less
-
Wind Roche-lobe Overflow in Low-mass Binaries: Exploring the Origin of Rapidly Rotating Blue LurkersAbstract Wind Roche-lobe overflow (WRLOF) is a mass-transfer mechanism proposed by Mohamed and Podsiadlowski for stellar binaries wherein the wind acceleration zone of the donor star exceeds its Roche-lobe radius, allowing stellar wind material to be transferred to the accretor at enhanced rates. WRLOF may explain characteristics observed in blue lurkers and blue stragglers. While WRLOF has been implemented in rapid population synthesis codes, it has yet to be explored thoroughly in detailed binary models such asMESA(a 1D stellar evolution code), and over a wide range of initial binary configurations. We incorporate WRLOF accretion inMESAto investigate wide low-mass binaries at solar metallicity. We perform a parameter study over the initial orbital periods and stellar masses. In most of the models where we consider angular momentum transfer during accretion, the accretor is spun up to the critical (or breakup) rotation rate. Then we assume the star develops a boosted wind to efficiently reduce the angular momentum so that it could maintain subcritical rotation. Balanced by boosted wind loss, the accretor only gains ∼2% of its total mass, but can maintain a near-critical rotation rate during WRLOF. Notably, the mass-transfer efficiency is significantly smaller than in previous studies in which the rotation of the accretor is ignored. We compare our results to observational data of blue lurkers in M67 and find that the WRLOF mechanism can qualitatively explain the origin of their rapid rotation, their location on the H-R diagram, and their orbital periods.more » « less
-
Abstract Recent work has shown that near-infrared (NIR) Hubble Space Telescope (HST) photometry allows us to disentangle multiple populations (MPs) among M dwarfs of globular clusters (GCs) and to investigate this phenomenon in very-low-mass (VLM) stars. Here, we present the color–magnitude diagrams of nine GCs and the open cluster NGC 6791 in the F110W and F160W bands of HST, showing that the main sequences (MSs) below the knee are either broadened or split, thus providing evidence of MPs among VLM stars. In contrast, the MS of NGC 6791 is consistent with a single population. The color distribution of M dwarfs dramatically changes between different GCs, and the color width correlates with the cluster mass. We conclude that the MP ubiquity, variety, and dependence on GC mass are properties common to VLM and more-massive stars. We combined UV, optical, and NIR observations of NGC 2808 and NGC 6121 (M4) to identify MPs along with a wide range of stellar masses (∼0.2–0.8 ⊙ ), from the MS turnoff to the VLM regime, and measured, for the first time, their mass functions (MFs). We find that the fraction of MPs does not depend on the stellar mass and that their MFs have similar slopes. These findings indicate that the properties of MPs do not depend on stellar mass. In a scenario where the second generations formed in higher-density environments than the first generations, the possibility that the MPs formed with the same initial MF would suggest that it does not depend on the environment.more » « less
An official website of the United States government

