skip to main content


Title: The SALT—Readout ASIC for Silicon Strip Sensors of Upstream Tracker in the Upgraded LHCb Experiment
SALT, a new dedicated readout Application Specific Integrated Circuit (ASIC) for the Upstream Tracker, a new silicon detector in the Large Hadron Collider beauty (LHCb) experiment, has been designed and developed. It is a 128-channel chip using an innovative architecture comprising a low-power analogue front-end with fast pulse shaping and a 40 MSps 6-bit Analog-to-Digital Converter (ADC) in each channel, followed by a Digital Signal Processing (DSP) block performing pedestal and Mean Common Mode (MCM) subtraction and zero suppression. The prototypes of SALT were fabricated and tested, confirming the full chip functionality and fulfilling the specifications. A signal-to-noise ratio of about 20 is achieved for a silicon sensor with a 12 pF input capacitance. In this paper, the SALT architecture and measurements of the chip performance are presented.  more » « less
Award ID(s):
1803004
NSF-PAR ID:
10343830
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
1
ISSN:
1424-8220
Page Range / eLocation ID:
107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    On-chip spectrometers have the potential to offer dramatic size, weight, and power advantages over conventional benchtop instruments for many applications such as spectroscopic sensing, optical network performance monitoring, hyperspectral imaging, and radio-frequency spectrum analysis. Existing on-chip spectrometer designs, however, are limited in spectral channel count and signal-to-noise ratio. Here we demonstrate a transformative on-chip digital Fourier transform spectrometer that acquires high-resolution spectra via time-domain modulation of a reconfigurable Mach-Zehnder interferometer. The device, fabricated and packaged using industry-standard silicon photonics technology, claims the multiplex advantage to dramatically boost the signal-to-noise ratio and unprecedented scalability capable of addressing exponentially increasing numbers of spectral channels. We further explore and implement machine learning regularization techniques to spectrum reconstruction. Using an ‘elastic-D1’ regularized regression method that we develop, we achieved significant noise suppression for both broad (>600 GHz) and narrow (<25 GHz) spectral features, as well as spectral resolution enhancement beyond the classical Rayleigh criterion.

     
    more » « less
  2. We propose an on-chip triply resonant electro-optic modulator architecture for RF-to-optical signal conversion and provide a detailed theoretical analysis of the optimal “circuit-level” device geometries and their performance limits. The designs maximize the RF-optical conversion efficiency through simultaneous resonant enhancement of the RF drive signal, a continuous-wave (CW) optical pump, and the generated optical sideband. The optical pump and sideband are resonantly enhanced in respective supermodes of a two-coupled-cavity optical resonator system, while the RF signal can be enhanced in addition by an LC circuit formed by capacitances of the optical resonator active regions and (integrated) matching inductors. We show that such designs can offer 15-50 dB improvement in conversion efficiency over conventional microring modulators. In the proposed configurations, the photon lifetime (resonance linewidth) limits the instantaneous RF bandwidth of the electro-optic response but does not limit its central RF frequency. The latter is set by the coupling strength between the two coupled cavities and is not subject to the photon lifetime constraint inherent to conventional singly resonant microring modulators. This feature enables efficient operation at high RF carrier frequencies without a reduction in efficiency commonly associated with the photon lifetime limit and accounts for 10-30 dB of the total improvement. Two optical configurations of the modulator are proposed: a “basic” configuration with equal Q-factors in both supermodes, most suitable for narrowband RF signals, and a “generalized” configuration with independently tailored supermode Q-factors that supports a wider instantaneous bandwidth. A second significant 5-20 dB gain in modulation efficiency is expected from RF drive signal enhancement by integrated LC resonant matching, leading to the total expected improvement of 15-50 dB. Previously studied triply-resonant modulators, with coupled longitudinal (across the free spectral range (FSR)) modes, have large resonant mode volume for typical RF frequencies, which limits the interaction between the optical and RF fields. In contrast, the proposed modulators support maximally tightly confined resonant modes, with strong coupling between the mode fields, which increases and maintains high device efficiency across a range of RF frequencies. The proposed modulator architecture is compact, efficient, capable of modulation at high RF carrier frequencies and can be applied to any cavity design or modulation mechanism. It is also well suited to moderate Q, including silicon, implementations, and may be enabling for future CMOS RF-electronic-photonic systems on chip.

     
    more » « less
  3. A polylithic integration technology is demonstrated for seamless stitching of RF and digital chiplets. In this technology, stitch-chips with compressible microinterconnects (CMIs) are used for low-loss and dense interconnection between chiplets. A testbed using fused-silica stitch-chips with integrated CMIs is demonstrated including modeling, fabrication, assembly, and characterization. A 500 µm-long stitch-chip signal link is measured to have less than 0.4 dB insertion loss up to 30 GHz. A simulated eye diagram for 1000 µm-long stitch-chip signal link has a clear opening at 50 Gbps data rate. Moreover, the S-parameters of the CMIs are extracted from this testbed and show less than 0.17 dB insertion loss up to 30 GHz. Benchmarking to silicon interposer based interconnection is also reported. 
    more » « less
  4. Coarsely quantized MIMO signalling methods have gained popularity in the recent developments of massive MIMO as they open up opportunities for massive MIMO implementation using cheap and power-efficient radio-frequency front-ends. This paper presents a new one-bit MIMO precoding approach using spatial Sigma-Delta (∑Δ) modulation. In previous one-bit MIMO precoding research, one mainly focuses on using optimization to tackle the difficult binary signal optimization problem that arise from the precoding design. Our approach attempts a different route. Assuming angular MIMO channels, we apply ∑Δ modulation—a classical concept in analog-to-digital conversion of temporal signals—in space. The resulting ∑Δ precoding approach has two main advantages: First, we no longer need to deal with binary optimization in ∑Δ precoding design. Particularly, the binary signal restriction is replaced by convex signal amplitude constraints. Second, the impact of the quantization error can be well controlled via modulator design and under appropriate operating conditions. Through symbol error probability analysis, we reveal that the very large number of antennas in massive MIMO provides favorable operating conditions for ∑Δ precoding. In addition, we develop a new ∑Δ modulation architecture that is capable of adapting the channel to achieve nearly zero quantization error for a targeted user. Furthermore, we consider multi-user ∑Δ precoding using the zero-forcing and symbol-level precoding schemes. These two ∑Δ precoding schemes perform considerably better than their direct one-bit quantized counterparts, as simulation results show. 
    more » « less
  5. Abstract

    Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5 G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor’s ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing.

     
    more » « less