skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Short-Period Surface-Wave Dispersion Dataset for Model Assessment of Africa’s Crust: ADAMA
Abstract We present the first in a series of dataset and model assessment products for investigating Africa’s lithosphere (ADAMA). This is a comprehensive catalog of short-period interstation surface-wave dispersion measurements and uncertainties. It is derived from processing continuous recordings of all publicly available three-component seismograms, spanning four decades, from ∼1372 stations, across 62 seismic networks deployed in and around the African continent. It includes Love- and Rayleigh-wave dispersion derived from frequency-domain ambient noise cross-correlation functions (NCFs). Phase and group dispersion, as well as their uncertainties, are then obtained with an iterative nonlinear waveform fitting of the NCFs, using a spectral element representation of a path-average a priori Earth model. Our catalog represents the following advances: (1) a large distribution of short period dispersion measurements: ∼114,000 interstation pairs at periods between 5 s and 40 s, (2) inclusion of uncertainties useful for regularization in continent-wide model building, (3) preliminary model assessments for different tectonic domains on the continent, and (4) an exemplary Love-wave phase velocity map obtained by Bayesian inversion revealing detailed features not previously detected. ADAMA will be used to prepare short-period, high-resolution dispersion maps, and for assessment and updates of widely used seismic velocity models of the crust across a diversity of terranes on the continent.  more » « less
Award ID(s):
2102495
PAR ID:
10343905
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
93
Issue:
3
ISSN:
0895-0695
Page Range / eLocation ID:
1943 to 1959
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use Eikonal tomography to derive phase and group velocities of surface waves for the plate boundary region in Southern California. Seismic noise data in the period range 2 and 20 s recorded in year 2014 by 346 stations with ~1‐ to 30‐km station spacing are analyzed. Rayleigh and Love wave phase travel times are measured using vertical‐vertical and transverse‐transverse noise cross correlations, and group travel times are derived from the phase measurements. Using the Eikonal equation for each location and period, isotropic phase and group velocities and 2‐psi azimuthal anisotropy are determined statistically with measurements from different virtual sources. Starting with the SCEC Community Velocity Model, the observed 2.5‐ to 16‐s isotropic phase and group dispersion curves are jointly inverted on a 0.05° × 0.05° grid to obtain local 1‐D piecewise shear wave velocity (Vs) models. Compared to the starting model, the final results have generally lowerVsin the shallow crust (top 3–10 km), particularly in areas such as basins and fault zones. The results also show clear velocity contrasts across the San Andreas, San Jacinto, Elsinore, and Garlock Faults and suggest that the San Andreas Fault southeast of San Gorgonio Pass is dipping to the northeast. Investigation of the nonuniqueness of the 1‐DVsinversion suggests that imaging the top 3‐kmVsstructure requires either shorter period (≤2 s) surface wave dispersion measurements or other types of data set such as Rayleigh wave ellipticity. 
    more » « less
  2. Abstract Africa's continental crust hosts a variety of geologic terrains and is crucial for understanding the evolution of its longest‐lived cratons. However, few of its seismological models are yet to incorporate the largest continent‐wide noise dispersion data sets. Here, we report on new insights into Africa's crustal architecture obtained using a new data set and model assessment product, ADAMA, which comprises a large ensemble of short‐period surface wave dispersion measurements: 5–40 s. We construct a continent‐wide model ofAfrica'sCrustEvaluated with ADAMA'sRayleighPhase maps (ACE‐ADAMA‐RP). Dispersion maps, and uncertainties, are obtained with a probabilistic approach. This model update, and a crustal taxonomy derived from unsupervised machine learning, reveals that the architecture of Africa's crust can be classified into two main types:primitive(C1: faster velocities with little gradients) andmodified(C2–C4: slower velocities in the shallow crust with more pronounced gradients). The Archean shields are “primitive,” showing little variation or secular evolution. The basins, orogens, and continental margins are “modified” and retain imprints of surface deformation. The crustal taxonomy is obtained without a‐priori geological information and differs from previous classification schemes. While most of our reported features are robust, probabilistic modeling suggests caution in the quantitative interpretations where illumination is compromised by low‐quality measurements, sparse coverage or both. Future extension of our approach to other complementary seismological and geophysical data sets—for example, multimode earthquake dispersion, receiver functions, gravity, and mineral physics, will enable continent‐wide lithospheric modeling that extends resolution to the upper mantle. 
    more » « less
  3. Abstract Comprehensive observations of surface wave anisotropy across Alaska and the Aleutian subduction zone would help to improve understanding of its tectonics, mantle dynamics, and earthquake risk. We produce such observations, using stations from the USArray Transportable Array, regional networks across Alaska, and the Alaska Amphibious Community Seismic Experiment in the Alaska‐Aleutian subduction zone both onshore and offshore. Our data include Rayleigh and Love wave phase dispersion from earthquakes (28–85 s) and ambient noise two‐ and three‐station interferometry (8–50 s). Compared with using two‐station interferometry alone, three‐station interferometry significantly improves the signal‐to‐noise ratio and approximately doubles the number of measurements retained. Average differences between both isotropic and anisotropic tomographic maps constructed from different methods lie within their uncertainties, which is justification for combining the measurements. The composite tomographic maps include Rayleigh wave isotropy and azimuthal anisotropy from 8 to 85 s both onshore and offshore, and onshore Love wave isotropy from 8 to 80 s. In the Alaska‐Aleutian subduction zone, Rayleigh wave fast directions vary from trench parallel to perpendicular and back to parallel with increasing periods, apparently reflecting the effect of the subducted Pacific Plate. The tomographic maps provide a basis for inferring the 3‐D anisotropic crustal and uppermost mantle structure across Alaska and the Aleutian subduction zone. 
    more » « less
  4. SUMMARY Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found only up to degree ∼10 at longer periods (T > 150 s) and up to degree ∼8 for overtones. Only 2ζ azimuthal variations in phase velocity of fundamental-mode Rayleigh waves were required by the reference data set; maps of 2ζ azimuthal variations are highly consistent between catalogues ( R = 0.6–0.8). Reference data with uncertainties are useful for improving existing measurement techniques, validating models of interior structure, calculating teleseismic data corrections in local or multiscale investigations and developing a 3-D reference Earth model. 
    more » « less
  5. Abstract Our understanding of the tectonic development of the African continent and the interplay between its geological provinces is hindered by unevenly distributed seismic instrumentation. In order to better understand the continent, we used long‐period ambient noise full‐waveform tomography on data collected from 186 broadband seismic stations throughout Africa and surrounding regions to better image the upper mantle structure. We extracted empirical Green's functions from ambient seismic noise using a frequency‐time normalization method and retrieved coherent signal at periods of 7–340 s. We simulated wave propagation through a heterogeneous Earth using a spherical finite‐difference approach to obtain synthetic waveforms, measured the misfit as phase delay between the data and synthetics, calculated numerical sensitivity kernels using the scattering integral approach, and iteratively inverted for structure. The resulting images of isotropic, shear wave speed for the continent reveal segmented, low‐velocity upper mantle beneath the highly magmatic northern and eastern sections of the East African Rift System (EARS). In the southern and western sections, high‐velocity upper mantle dominates, and distinct, low‐velocity anomalies are restricted to regions of current volcanism. At deeper depths, the southern and western EARS transition to low velocities. In addition to the EARS, several low‐velocity anomalies are scattered through the shallow upper mantle beneath Angola and North Africa, and some of these low‐velocity anomalies may be connected to a deeper feature. Distinct upper mantle high‐velocity anomalies are imaged throughout the continent and suggest multiple cratonic roots within the Congo region and possible cratonic roots within the Sahara Metacraton. 
    more » « less