Despite the recent emphasis on the importance of K-12 students engaging in engineering content and practices, there has been little research done about how teachers learn engineering practices through teacher workshops and even less on how they utilize those experiences to teach engineering in their classes. Using methods of interactional ethnography, we analyzed data from an online teacher workshop in which elementary teachers engineered solutions to a multi-criteria problem in which balancing tradeoffs was a key practice. We found that teachers tended to focus on one criterion rather than both and lacked strategies to consider balancing these tradeoffs. We also found that a second iteration afforded all groups to demonstrate learning through improvement. Implications are discussed related to the importance of a focus on balancing tradeoffs in teacher learning and on pedagogy of engineering projects.
more »
« less
Impact of AR APP in Online Civil Engineering Learning
In this study, an AR-based mobile learning application is proposed to assist online civil engineering course learning during the COVID-19 pandemic. A quasi-experiment has been conducted, and feedback from both the teacher and students has been analysed to examine the effectiveness of the proposed approach in terms of learning achievements. The subjects were 46 sophomores who majored in civil engineering in one class taught by one instructor in a southern U.S. state university. The quasi-experimental results showed that the proposed approach could not significantly improve the students’ online learning achievements. However, the feedbacks brought some explanation to this non-significant result. They indicated that students found this mobile AR app to be an interesting, helpful, practical, and effective approach in their online learning that helped them gain more in-depth knowledge than traditional teacher-centred classroom instruction.
more »
« less
- Award ID(s):
- 1818672
- PAR ID:
- 10343985
- Editor(s):
- Wisker, G.; Elliot, D.; Quinsee, S.; Lau, A.; Bland, T.
- Date Published:
- Journal Name:
- Innovations in education and teaching international
- ISSN:
- 1470-3297
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT As technological advances appear, it is desirable to integrate them into new engineering education teaching methods, aiming to enhance students' comprehension and engagement with complex subjects. Augmented reality (AR) emerges as a promising tool in this effort, offering students opportunities to visualize and conceptualize challenging topics that are otherwise too abstract or difficult to grasp. Within civil engineering curriculums, structural analysis, a junior‐level course forming the foundation of many other courses, poses challenges in visualization and understanding. This paper investigates the development of a mobile AR application intended to improve the conceptual understanding of structural analysis material. This application is designed to overlay schematic representations of structural components (i.e., beams, columns, frames, and trusses) onto images of iconic local campus buildings, allowing students to interactively explore exaggerated deflections and internal and external forces under various loading conditions. By contextualizing structural analysis calculations within familiar settings, the goal is to leverage a sense of relevance and place‐based attachments in students' learning. Furthermore, the paper examines the development process and usability of the AR application, providing insights into its implementation in educational settings. Experimental results, including comparisons with a control group, are analyzed to assess the efficacy of the AR application in improving students' understanding of structural analysis concepts. Furthermore, the paper examines the development process and usability of the AR application, providing insights into its implementation in educational settings. Perspectives from structural analysis faculty members are also discussed, shedding light on the potential benefits and challenges associated with integrating AR technology into engineering education. In addition, the study highlights the value of place‐based learning, wherein students engage with real‐world structures in their immediate environment, fostering deeper connections between theoretical concepts and practical applications. Overall, this research contributes to the growing body of literature on innovative teaching approaches in engineering education and highlights the potential of AR as a valuable tool for enhancing student learning experiences in structural analysis and related disciplines.more » « less
-
null (Ed.)There is a growing concern in STEM fields during the ongoing pandemic about how students will be able to achieve one of the major learning outcomes; an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering/scientific judgement to draw conclusions. Experimental Centric Pedagogy (ECP) has been shown to promote motivation and achievement in electrical engineering among black students and students in general. This paper focuses on the development of a hands-on laboratory experiment for undergraduate students in the department of civil engineering using Mobile Hands-On Studio Technology to improve experiential learning. The home-based experiment focuses on the measurement of beam stresses resulting from weights applied to the free-end of the beam while being fixed at the other end. The beam is made up of an acrylic material and has dimensions of 1500 mm in length, 40 mm in width, and 3.175 mm in thickness. Data acquisition from strain gauges installed on the beams was made possible using ALICE Voltmeter which displays voltage readings upon beam displacement. The stress readings are then calibrated and transformed to strains based on hooke’s law relationship. Findings indicate good understanding of concepts, motivation and students learning experiences through teamwork and collaborative activities. and achievement of stated learning outcome.more » « less
-
As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education.more » « less
-
Langran, E. (Ed.)Over the last two years, the COVID-19 pandemic has required teacher educators to teach their classes online. Teacher educators now need to reflect on the learning opportunities that the COVID-19 induced shift to online learning has provided. This study shares two teacher educators’ experiences of teaching and supporting preservice teachers (PSTs) as they taught engineering online to elementary students. The two teacher educators noticed (a) positive changes in PSTs’ attitudes and beliefs about technology integration, (b) PSTs’ tendency to select and use of educational technologies, (c) PSTs’ recognition of the importance of online interaction and feedback from K-12 students, (d) the importance of providing PSTs with extended access to physical hardware, and (e) the importance of providing developmentally appropriate digital resources. The paper concludes with suggestions for teacher educators who are preparing PSTs for the next generation of teaching.more » « less
An official website of the United States government

