skip to main content

Title: Solar Toroidal Field Evolution Spanning Four Sunspot Cycles Seen by the Wilcox Solar Observatory, the Solar and Heliospheric Observatory/Michelson Doppler Imager, and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager
Abstract Forty-four years of Wilcox Solar Observatory, 14 years of Michelson Doppler Imager on the Solar and Heliospheric Observatory, and 11 years of Helioseismic and Magnetic Imager on the Solar Dynamics Observatory magnetic field data have been studied to determine the east–west inclination—the toroidal component—of the magnetic field. Maps of the zonal averaged inclination show that each toroidal field cycle begins at around the same time at high latitudes in the northern and southern hemispheres, and ends at the equator. Observation of these maps also shows that each instance of a dominant toroidal field direction starts at high latitudes near sunspot maximum and is still visible near the equator well past the minimum of its cycle, indicating that the toroidal field cycle spans approximately two sunspot cycles. The length of the extended activity cycle is measured to be approximately 16.8 yr.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
The Astrophysical Journal Letters
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We explore the performance of the Alfvén Wave Solar atmosphere Model with near-real-time (NRT) synoptic maps of the photospheric vector magnetic field. These maps, produced by assimilating data from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory, use a different method developed at the National Solar Observatory (NSO) to provide a near contemporaneous source of data to drive numerical models. Here, we apply these NSO-HMI-NRT maps to simulate three full Carrington rotations: 2107.69 (centered on the 2011 March 7 20:12 CME event), 2123.5 (centered on 2012 May 11), and 2219.12 (centered on the 2019 July 2 solar eclipse), which together cover various activity levels for solar cycle 24. We show the simulation results, which reproduce both extreme ultraviolet emission from the low corona while simultaneously matching in situ observations at 1 au as well as quantify the total unsigned open magnetic flux from these maps.

    more » « less
  2. Context.Light bridges are bright, long, and narrow features that are typically connected to the formation or decay processes of sunspots and pores.

    Aims.The interaction of magnetic fields and plasma flows is investigated in the trailing part of an active region, where pores and magnetic knots evolve into a complex sunspot. The goal is to identify the photospheric and chromospheric processes, which transform the mainly vertical magnetic fields of pores into a sunspot with multiple umbral cores, light bridges, and rudimentary penumbrae.

    Methods.Conducting observations with a broad variety of telescopes and instruments provides access to different atmospheric layers and the changing morphology of features connected to strong magnetic fields. While the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) provides full-disk continuum images and line-of-sight magnetograms, the fine structure and flows around a pore can be deduced from high-resolution observations in various wavelengths as provided by theGoodeSolar Telescope (GST) at the Big Bear Solar Observatory (BBSO). Horizontal proper motions are evaluated applying local correlation tracking (LCT) to the available time series, whereas the connectivity of sunspot features can be established using the background-subtracted activity maps (BaSAMs).

    Results.Photospheric flow maps indicate radial outflows, where the light bridge connects to the surrounding granulation, whereas inflows are present at the border of the pores. In contrast, the chromospheric flow maps show strong radial outflows at superpenumbral scales, even in the absence of a penumbra in the photosphere. The region in between the two polarities is characterized by expanding granules creating strong divergence centers. Variations in BaSAMs follow locations of significant and persistent changes in and around pores. The resulting maps indicate low variations along the light bridge, as well as thin hairlines connecting the light bridge to the pores and strong variations at the border of pores. Various BaSAMs demonstrate the interaction of pores with the surrounding supergranular cell. The Hαline-of-sight velocity maps provide further insights into the flow structure, with twisted motions along some of the radial filaments around the pore with the light bridge. Furthermore, flows along filaments connecting the two polarities of the active region are pronounced in the line-of-sight velocity maps.

    Conclusions.The present observations reveal that even small-scale changes of plasma motions in and around pores are conducive to transform pores into sunspots. In addition, chromospheric counterparts of penumbral filaments appear much earlier than the penumbral filaments in the photosphere. Penumbra formation is aided by a stable magnetic feature that anchors the advection of magnetic flux and provides a connection to the surrounding supergranular cell, whereas continuously emerging flux and strong light bridges are counteragents that affect the appearance and complexity of sunspots and their penumbrae.

    more » « less
  3. Abstract

    Three-minute oscillations are a common phenomenon in the solar chromosphere above a sunspot. Oscillations can be affected by the energy release process related to solar flares. In this paper, we report on an enhanced oscillation in flare event SOL2012-07-05T21:42 with a period of around 3 minutes that occurred at the location of a flare ribbon at a sunspot umbral–penumbral boundary and was observed in both chromospheric and coronal passbands. An analysis of this oscillation was carried out using simultaneous ground-based observations from the Goode Solar Telescope at the Big Bear Solar Observatory and space-based observations from the Solar Dynamics Observatory. A frequency shift was observed before and after the flare, with the running penumbral wave that was present with a period of about 200 s before the flare coexisting with a strengthened oscillation with a period of 180 s at the same locations after the flare. We also found a phase difference between different passbands, with the oscillation occurring from high-temperature to low-temperature passbands. Theoretically, the change in frequency was strongly dependent on the variation of the inclination of the magnetic field and the chromospheric temperature. Following an analysis of the properties of the region, we found the frequency change was caused by a slight decrease of the magnetic inclination angle with respect to the local vertical. In addition, we suggest that the enhanced 3 minute oscillation was related to the additional heating, maybe due to the downflow, during the EUV late phase of the flare.

    more » « less
  4. Context. The magnetic field is the underlying cause of solar activities. Spectropolarimetric Stokes inversions have been routinely used to extract the vector magnetic field from observations for about 40 years. In contrast, the photospheric continuum images have an observational history of more than 100 years. Aims. We suggest a new method to quickly estimate the unsigned radial component of the magnetic field, | B r |, and the transverse field, B t , just from photospheric continuum images ( I ) using deep convolutional neural networks (CNN). Methods. Two independent models, that is, I versus | B r | and I versus B t , are trained by the CNN with a residual architecture. A total of 7800 sets of data ( I , B r and B t ) covering 17 active region patches from 2011 to 2015 from the Helioseismic and Magnetic Imager are used to train and validate the models. Results. The CNN models can successfully estimate | B r | as well as B t maps in sunspot umbra, penumbra, pore, and strong network regions based on the evaluation of four active regions (test datasets). From a series of continuum images, we can also detect the emergence of a transverse magnetic field quantitatively with the trained CNN model. The three-day evolution of the averaged value of the estimated | B r | and B t from continuum images follows that from Stokes inversions well. Furthermore, our models can reproduce the nonlinear relationships between I and | B r | as well as B t , explaining why we can estimate these relationships just from continuum images. Conclusions. Our method provides an effective way to quickly estimate | B r | and B t maps from photospheric continuum images. The method can be applied to the reconstruction of the historical magnetic fields and to future observations for providing the quick look data of the magnetic fields. 
    more » « less
  5. Abstract

    We compare a method for inferring the photospheric vector magnetic field using only spectroscopy to a conventional method based on polarimetry. The magnetic field strengthBand inclination angle can be inferred from the Zeeman splitting using only StokesI. We applied this method to a sunspot observed with the Vacuum Tower Telescope and compared the results to vector magnetograms from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, which used a polarimetric inversion. The spectroscopic inversion tends to show higher values inBcompared to the polarimetric data. In quiet regions the discrepancy inBwas typically a factor of two. In the strong sunspot fields, the differences averaged ≈22%. These discrepancies are significant, but comparable to those typically found among magnetograms from different instruments. Our results support the use of the spectroscopic inversion technique to provide a fast and reasonable estimate ofB.

    more » « less