skip to main content


Title: Real-time Hybrid Simulation of Pulse-type Ground Motions Effects on Steel Building with Nonlinear Viscous Dampers
This paper investigates the effects of near-fault pulse-type ground motions on the structural response of a 3-story steel structure with nonlinear viscous dampers using the real-time hybrid simulation (RTHS) testing method. The real time loop of action and reaction between the experimental and numerical partitions executed in the RTHS enabled the accurate capturing of the velocity pulse effects of pulse-type ground motions. An ensemble of 10 natural pulse-type ground motions at the design basis earthquake (DBE) level is used for the RTHS. The accuracy of RTHS under high velocity loading is demonstrated, and thereby, is a validated method for experimentally investigation of the complicated structural behavior of structures with rate-dependent damping devices. The test results showed that the dampers are essentially effective in earthquake hazard mitigation effects involving pulse-type ground motions. The average peak story drift ratio under the set of pulse-type ground motions is 1.08% radians with a COV value less than 0.3, which indicates that the investigated structure would achieve the ASCE 7-10 seismic performance objective for Occupancy Category III structures under the DBE level pulse-type ground motions.  more » « less
Award ID(s):
2037771
NSF-PAR ID:
10344052
Author(s) / Creator(s):
Date Published:
Journal Name:
12th National Conference on Earthquake Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Near‐fault pulse‐type ground motions have characteristics that are substantially different from ordinary far‐field ground motions. It is essential to understand the unique effects of pulse‐type ground motions on structures and include the effects in seismic design. This paper investigates the effects of near‐fault pulse‐type ground motions on the structural response of a 3‐story steel structure with nonlinear viscous dampers using the real‐time hybrid simulation (RTHS) testing method. The structure is designed for 75% of the code‐specified design base shear strength. In the RTHS, the loop of action and reaction between the experimental and numerical partitions are executed in real time, accurately capturing the velocity pulse effects of pulse‐type ground motions. A set of 10 unscaled pulse‐type ground motions at the design basis earthquake (DBE) level is used for the RTHS. The test results validated that RTHS is a viable method for experimentally investigating the complicated structural behavior of structures with rate‐dependent damping devices, and showed that the dampers are essentially effective in earthquake hazard mitigation effects involving pulse‐type ground motions. The average peak story drift ratio under the set of pulse‐type ground motions is 1.08% radians with a COV value less than 0.3, which indicated that structural system would achieve the ASCE 7–10 seismic performance objective for Occupancy Category III structures under the DBE level pulse‐type ground motions. Additionally, a nonlinear Maxwell model for the nonlinear viscous dampers is validated for future structural reliability numerical studies involving pulse‐type ground motions.

     
    more » « less
  2. Large-scale multi-directional real-time hybrid simulations (RTHS) are used to assess the maximum considered earthquake (MCE) seismic performance of a 40-story steel building equipped with supplemental nonlinear viscous dampers. These dampers are placed between outrigger trusses and the perimeter columns of a building that was part of the inventory for the California Tall Building Initiative (TBI) PEER study. The analytical substructure for the RTHS consists of a 3-D nonlinear model of the building while the experimental substructure consists of a full scale nonlinear viscous damper. Other dampers in the structure are analytically modelled using an online explicit model updating scheme where the physical damper is used to obtain the parameters of the analytical damper models during the RTHS. The displacement, residual drift, and ductility demand are found to be reduced by adding the dampers to the outrigger, but only in the direction of the plane of the outriggers. Higher modes, including torsional modes, contribute to the 3-D seismic response. 
    more » « less
  3. null (Ed.)
    Floor isolation systems (FISs) are used to mitigate earthquake-induced damage to sensitive building contents and equipment. Traditionally, the isolated floor and the primary building structure (PS) are analyzed independently, assuming the PS response is uncoupled from the FIS response. Dynamic coupling may be non-negligible when nonlinearities are present under large deflections at strong disturbance levels. This study investigates a multi-functional FIS that functions primarily as an isolator (i.e., attenuating total acceleration sustained by the isolated equipment) at low-to-moderate disturbance levels, and then passively adapt under strong disturbances to function as a nonlinear (vibro-impact) dynamic vibration absorbers to protect the PS (i.e., reducing inter-story drifts). The FIS, therefore, functions as a dual-model vibration isolator/absorber system, with displacement dependent response adaptation. A scale experimental model—consisting of a three-story frame and an isolated mass—is used to demonstrate and evaluate the design methodology via shake table tests. The properties of the 3D-printed rolling pendulum (RP) bearing, the seismic gap, and the impact mechanism are optimized to achieve the desired dual-mode performance. A suite of four ground motions with varying spectral qualities are used, and their amplitudes are scaled to represent various hazards—from service level earthquake (SLE), to design basis earthquake (DBE), and even maximum considered earthquake (MCE). The performance of the multi-functional FIS is established and is described in this paper. 
    more » « less
  4. : In order to evaluate urban earthquake resilience, reliable structural modeling is needed. However, detailed modeling of a large number of structures and carrying out time history analyses for sets of ground motions are not practical at an urban scale. Reduced-order surrogate models can expedite numerical simulations while maintaining necessary engineering accuracy. Neural networks have been shown to be a powerful tool for developing surrogate models, which often outperform classical surrogate models in terms of scalability of complex models. Training a reliable deep learning model, however, requires an immense amount of data that contain a rich input-output relationship, which typically cannot be satisfied in practical applications. In this paper, we propose model-informed symbolic neural networks (MiSNN) that can discover the underlying closed-form formulations (differential equations) for a reduced-order surrogate model. The MiSNN will be trained on datasets obtained from dynamic analyses of detailed reinforced concrete special moment frames designed for San Francisco, California, subject to a series of selected ground motions. Training the MiSNN is equivalent to finding the solution to a sparse optimization problem, which is solved by the Adam optimizer. The earthquake ground acceleration and story displacement, velocity, and acceleration time histories will be used to train 1) an integrated SNN, which takes displacement and velocity states and outputs the absolute acceleration response of the structure; and 2) a distributed SNN, which distills the underlying equation of motion for each story. The results show that the MiSNN can reduce computational cost while maintaining high prediction accuracy of building responses. 
    more » « less
  5. Protecting both the essential building contents and the structural system—as well as facilitating and accelerating the post-event functionality of business operations—is a major concern during natural hazards. Floor isolation systems (FIS) with rolling pendulum bearings along with nonlinear fluid viscous dampers (NFVD) have been proposed to mitigate damage and enhance the resiliency of non-structural and structural systems, respectively. These devices are designed to decrease vibrations under dynamic loading conditions. In this poster, we introduce research using tridimensional nonlinear cyber-physical experimental testing (i.e., real-time hybrid simulations) to validate the performance of these response modification devices placed in structural systems under wind and earthquake loading conditions. The effects of soil-structure-foundation and fluid-structure interactions were also accounted for. The novelty of the project is the use of multi-directional large-scale real-time hybrid simulations of complex nonlinear systems under wind and earthquake demands to combine experimental structural modification passive devices with analytical multi-story buildings considering soil-foundation interaction via neural network. Results show that the FIS and NFVD can significantly reduce the demand on non-structural and structural systems of buildings subjected to natural hazards whose response can be also significantly affected by soil-foundation-structure interaction. A product of this research is the data (which is linked in Related Works), which can be used to compare with new studies using the same experimental techniques and structural modification devices or with alternative approaches. Researchers interested in multi-natural hazards resilience and mitigation, state-of-the-art structural experimental techniques, and the use of machine learning as a tool to improve modeling efficiency will benefit from its results. Also, companies dedicated to the commercial development of structural response modification devices, as well as policymakers working or with interest in economic and social resilience. 
    more » « less