Real-time hybrid simulation (RTHS) divides a structural system into analytical and experimental substructures that are coupled through their common degrees of freedom. This paper introduces a framework to enable RTHS to be performed on 3D nonlinear models of tall buildings with rate dependent nonlinear response modification devices, where the structure is subjected to multi-directional wind and earthquake natural hazards. A 40-story tall building prototype with damped outriggers is selected as a case study. The analytical substructure for the RTHS consists of a 3-D nonlinear model of the structure, where each member in the building is discretely modeled in conjunction with the use of a super element. The experimental substructure for the RTHS consists of a full-scale rate-dependent nonlinear viscous damper that is physically tested in the lab, with the remaining dampers in the outrigger system modeled analytically. The analytically modeled dampers use a stable explicit non-iterative element with an online model updating algorithm, by which the covariance matrix of the damper model’s state variables does not become ill-conditioned. The damper model parameters can thereby be updated in real-time using measured data from the experimental substructure. The explicit MKR-α method is optimized and used in conjunction with the super element to efficiently integrate the condensed equations of motion of a large complex model having more than 1000 nonlinear elements, thus enabling multi-axis earthquake and wind hybrid nonlinear simulations to be performed in real-time. An adaptive servo-hydraulic actuator control scheme is used to enable precise real-time actuator displacements in the experimental substructure to be achieved that match the target displacements during a RTHS. The IT real-time architecture for integrating the components of the framework is described. To assess the framework, 3D RTHS of the 40-story structure were performed involving multi-axis translational and torsional response to multi-directional earthquake and wind natural hazards. The RTHS technique was applied to perform half-power tests to experimentally determine the amount of supplemental damping provided by the damped outrigger system for translational and torsional modes of vibration of the building. The results from the study presented herein demonstrate that RTHS can be applied to large nonlinear large structural systems involving multi-axis response to multi-directional excitation.
more »
« less
Multi-directional Seismic Behavior Assessment of a Tall Building using Real-Time Hybrid Simulations
Large-scale multi-directional real-time hybrid simulations (RTHS) are used to assess the maximum considered earthquake (MCE) seismic performance of a 40-story steel building equipped with supplemental nonlinear viscous dampers. These dampers are placed between outrigger trusses and the perimeter columns of a building that was part of the inventory for the California Tall Building Initiative (TBI) PEER study. The analytical substructure for the RTHS consists of a 3-D nonlinear model of the building while the experimental substructure consists of a full scale nonlinear viscous damper. Other dampers in the structure are analytically modelled using an online explicit model updating scheme where the physical damper is used to obtain the parameters of the analytical damper models during the RTHS. The displacement, residual drift, and ductility demand are found to be reduced by adding the dampers to the outrigger, but only in the direction of the plane of the outriggers. Higher modes, including torsional modes, contribute to the 3-D seismic response.
more »
« less
- Award ID(s):
- 2037771
- PAR ID:
- 10344047
- Date Published:
- Journal Name:
- 12th National Conference on Earthquake Engineering
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Real‐time hybrid simulation (RTHS) involves dividing a structural system into numerical and experimental substructures. The experimental substructure is challenging to model analytically and is therefore modeled physically in the laboratory. Analytical substructures are conventionally modeled using the finite element method. The two substructures are kinematically linked, and the governing equations of motion are solved in real‐time. Thus, the state determination of the analytical substructure needs to occur within the timestep, which is of the order of a few milliseconds. All structural systems are supported by a soil‐foundation system and any evaluation of the efficacy of response modification devices placed in the structure should consider soil‐foundation structure interaction (SFSI) effects. SFSI adds compliance to a structural system, thereby altering the natural frequencies. Additionally, nonlinear behavior in the soil can result in residual deformations in the foundation and structure, as well as provide added damping. These effects can occur under both wind and earthquake loading. To overcome the barrier of the large computational effort required to model SFSI effects in real‐time using the conventional finite element approach, a neural network (NN) model is combined with an explicit‐based analytical substructure and experimental substructure with dampers to create a framework for performing RTHS with SFSI effects. The framework includes a block of long‐short term memory (LSTM) layers that is combined with a parallel rectified linear unit (ReLU) to form a NN model of the soil‐foundation system. RTHS of a tall 40‐story steel building equipped with nonlinear viscous dampers and subjected to a windstorm are performed to illustrate the framework. It was found that a number of factors have an effect on the quality of RTHS results. These include: (i) the discretization of the wind loading into bins of basic wind speed; (ii) the extent of the NN model training as determined by the root mean square error (RMSE); (iii) noise in the restoring forces produced by the NN model and its interaction with the integration algorithm; and, (iv) the bounding of outliers of the NN model's output. Guidelines for extending the framework for the RTHS of structures subjected to seismic loading are provided.more » « less
-
Abstract Near‐fault pulse‐type ground motions have characteristics that are substantially different from ordinary far‐field ground motions. It is essential to understand the unique effects of pulse‐type ground motions on structures and include the effects in seismic design. This paper investigates the effects of near‐fault pulse‐type ground motions on the structural response of a 3‐story steel structure with nonlinear viscous dampers using the real‐time hybrid simulation (RTHS) testing method. The structure is designed for 75% of the code‐specified design base shear strength. In the RTHS, the loop of action and reaction between the experimental and numerical partitions are executed in real time, accurately capturing the velocity pulse effects of pulse‐type ground motions. A set of 10 unscaled pulse‐type ground motions at the design basis earthquake (DBE) level is used for the RTHS. The test results validated that RTHS is a viable method for experimentally investigating the complicated structural behavior of structures with rate‐dependent damping devices, and showed that the dampers are essentially effective in earthquake hazard mitigation effects involving pulse‐type ground motions. The average peak story drift ratio under the set of pulse‐type ground motions is 1.08% radians with a COV value less than 0.3, which indicated that structural system would achieve the ASCE 7–10 seismic performance objective for Occupancy Category III structures under the DBE level pulse‐type ground motions. Additionally, a nonlinear Maxwell model for the nonlinear viscous dampers is validated for future structural reliability numerical studies involving pulse‐type ground motions.more » « less
-
Seismic resiliency includes the ability to protect the contents of mission-critical buildings from becoming damaged. The contents include telecommunication and other types of electronic equipment in mission-critical data centres. One technique to protect sensitive equipment in buildings is the use of floor isolation systems (FIS). Multi-directional shake table real-time hybrid simulation (RTHS) is utilized in this paper to validate the performance of full-scale rolling pendulum (RP) bearings, incorporating multi-scale (building– FIS–equipment) interactions. The analytical substructure for the RTHS included 3D nonlinear models of the building and isolated equipment, while the experimental substructure was comprised of the FIS. The RTHS test setup consisted of the FIS positioned on a shake table, where it is coupled to the analytical substructure and subjected to multi-directional deformations caused by the building’s floor accelerations and equipment motion from an earthquake. Parametric studies were performed to assess the influence of different building lateral load systems on the performance of the FISs. The lateral load resisting systems included buildings with steel moment resisting frame (SMRF) systems and with buckling restrained braced frame (BRBF) systems. Each building type was subjected to multi-directional ground motions of different sources and hazard levels. Details of the experimental test setup, RTHS test protocol and main preliminary results on the multi-directional testing of an RP-based FIS are described. Challenges in conducting the multi-axial RTHS, including the nonlinear kinematics transformation, adaptive compensation for the actuator-table dynamics, along with the approaches used to overcome them are presented. The acceleration and deformation response of the isolated equipment is assessed to demonstrate the effectiveness of the FIS in mitigating the effects of multi-directional seismic loading on isolated equipment in mission-critical buildings.more » « less
-
The system under investigation is a 2-story reinforced concrete building. Nonlinear viscous dampers were placed at the 1st and 2nd stories. The building was subjected to the maximum considered earthquake hazard levels. The outcome of the tests is to assess a newly developed explicit non-iterative formulation for the nonlinear viscous damper model and the ability of the unscented Kalman filter to identify and update the damper parameters in order to improve the model’s prediction of the damper force. The data collected from the tests can be reused by replaying the real-time hybrid simulation offline, where all of the response quantities of the building can be retrieved.more » « less
An official website of the United States government

