skip to main content

Title: S4 Features and Artificial Intelligence for Designing a Robot against COVID-19—Robocov
Since the COVID-19 Pandemic began, there have been several efforts to create new technology to mitigate the impact of the COVID-19 Pandemic around the world. One of those efforts is to design a new task force, robots, to deal with fundamental goals such as public safety, clinical care, and continuity of work. However, those characteristics need new products based on features that create them more innovatively and creatively. Those products could be designed using the S4 concept (sensing, smart, sustainable, and social features) presented as a concept able to create a new generation of products. This paper presents a low-cost robot, Robocov, designed as a rapid response against the COVID-19 Pandemic at Tecnologico de Monterrey, Mexico, with implementations of artificial intelligence and the S4 concept for the design. Robocov can achieve numerous tasks using the S4 concept that provides flexibility in hardware and software. Thus, Robocov can impact positivity public safety, clinical care, continuity of work, quality of life, laboratory and supply chain automation, and non-hospital care. The mechanical structure and software development allow Robocov to complete support tasks effectively so Robocov can be integrated as a technological tool for achieving the new normality’s required conditions according to government regulations. more » Besides, the reconfiguration of the robot for moving from one task (robot for disinfecting) to another one (robot for detecting face masks) is an easy endeavor that only one operator could do. Robocov is a teleoperated system that transmits information by cameras and an ultrasonic sensor to the operator. In addition, pre-recorded paths can be executed autonomously. In terms of communication channels, Robocov includes a speaker and microphone. Moreover, a machine learning algorithm for detecting face masks and social distance is incorporated using a pre-trained model for the classification process. One of the most important contributions of this paper is to show how a reconfigurable robot can be designed under the S3 concept and integrate AI methodologies. Besides, it is important that this paper does not show specific details about each subsystem in the robot. « less
Authors:
; ; ; ; ;
Award ID(s):
1828010
Publication Date:
NSF-PAR ID:
10344135
Journal Name:
Future Internet
Volume:
14
Issue:
1
Page Range or eLocation-ID:
22
ISSN:
1999-5903
Sponsoring Org:
National Science Foundation
More Like this
  1. This article examines 152 reports the use of robots explicitly due to the COVID-19 pandemic reported in the science, trade, and press from 24 Jan 2021 to 23 Jan 2022 (Year 2) and compares with the previously published uses from 24 Jan 2020 to 23 Jan 2021 (Year 1). Of these 152 reports, 80 were new unique instances documented in 25 countries, bringing the total to 420 instances in 52 countries since 2020. The instances did not add new work domains or use cases, though they changed the relative ranking of three use cases. The most notable trend in Year was the shift from a) government or institutional use of robots to protect healthcare workers and the Public to b) personal and business use to enable the continuity of work and education. In Year 1, Public Safety, Clinical Care, and Continuity of Work and Education were the three highest work domains but in Year 2, Continuity of Work and Education had the highest number of instances.
  2. The outbreak of the COVID-19 pandemic, in 2020, has accelerated the need for personal protective equipment (PPE) masks as one of the methods to reduce and/or eliminate transmission of the coronavirus across communities. Despite the availability of different coronavirus vaccines, it is still recommended by the Center of Disease Control and Prevention (CDC), World Health Organization (WHO), and local authorities to apply public safety measures including maintaining social distancing and wearing face masks. This includes individuals who have been fully vaccinated. Remarkable increase in scientific studies, along with manufacturing-related research and development investigations, have been performed in an attempt to provide better PPE solutions during the pandemic. Recent literature has estimated the filtration efficiency (FE) of face masks and respirators shedding the light on specific targeted parameters that investigators can measure, detect, evaluate, and provide reliable data with consistent results. This review showed the variability in testing protocols and FE evaluation methods of different face mask materials and/or brands. In addition to the safety requirements needed to perform aerosol viral filtration tests, one of the main challenges researchers currently face is the inability to simulate or mimic true aerosol filtration scenarios via laboratory experiments, field tests, and in vitro/in vivomore »investigations. Moreover, the FE through the mask can be influenced by different filtration mechanisms, environmental parameters, filtration material properties, number of layers used, packing density, fiber charge density, fiber diameter, aerosol type and particle size, aerosol face velocity and concentration loadings, and infectious concentrations generated due to different human activities. These parameters are not fully understood and constrain the design, production, efficacy, and efficiency of face masks.« less
  3. Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infectedmore »person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper.« less
  4. With only 536 COVID-19 cases and 11 fatalities, India took the historic decision of a 21-day national lockdown on March 25, 2020. The lockdown was first extended to May 3 soon after the analysis of this article was completed, and then to May 18 while this article was being revised. In this article, we use a Bayesian extension of the susceptible-infected-removed (eSIR) model designed for intervention forecasting to study the short- and long-term impact of an initial 21-day lockdown on the total number of COVID-19 infections in India compared to other, less severe nonpharmaceutical interventions. We compare effects of hypothetical durations of lockdown on reducing the number of active and new infections. We find that the lockdown, if implemented correctly, can reduce the total number of cases in the short term, and buy India invaluable time to prepare its health care and disease-monitoring system. Our analysis shows we need to have some measures of suppression in place after the lockdown for increased benefit (as measured by reduction in the number of cases). A longer lockdown from 42–56 days is preferable to substantially ‘flatten the curve’ when compared to 21–28 days of lockdown. Our models focus solely on projecting the numbermore »of COVID-19 infections and thus inform policymakers about one aspect of this multifaceted decision-making problem. We conclude with a discussion on the pivotal role of increased testing, reliable and transparent data, proper uncertainty quantification, accurate interpretation of forecasting models, reproducible data science methods, and tools that can enable data-driven policymaking during a pandemic. Our software products are available at covind19.org.« less
  5. COVID-19 resulted in health and logistical challenges for many sectors of the American economy, including the trucking industry. This study examined how the pandemic impacted the trucking industry, focused on the pandemic’s impacts on company operations, health, and stress of trucking industry employees. Data were collected from three sources: surveys, focus groups, and social media posts. Individuals at multiple organizational levels of trucking companies (i.e., supervisors, upper-level management, and drivers) completed an online survey and participated in online focus groups. Data from focus groups were coded using a thematic analysis approach. Publicly available social media posts from Twitter were analyzed using a sentiment analysis framework to assess changes in public sentiment about the trucking industry pre- and during-COVID-19. Two themes emerged from the focus groups: (1) trucking company business strategies and adaptations and (2) truck driver experiences and workplace safety. Participants reported supply chain disruptions and new consumer buying trends as having larger industry-wide impacts. Company adaptability emerged due to freight variability, leading organizations to pivot business models and create solutions to reduce operational costs. Companies responded to COVID-19 by accommodating employees’ concerns and implementing safety measures. Truck drivers noted an increase in positive public perception of truck drivers, butmore »job quality factors worsened due to closed amenities and decreased social interaction. Social media sentiment analysis also illustrated an increase in positive public sentiment towards the trucking industry during COVID-19. The pandemic resulted in multi-level economic, health, and social impacts on the trucking industry, which included economic impacts on companies and economic, social and health impacts on employees within the industry levels. Further research can expand on this study to provide an understanding of the long-term impacts of the pandemic on the trucking industry companies within the industry and segments of the trucking industry workforce.« less