skip to main content

Title: S4 Features and Artificial Intelligence for Designing a Robot against COVID-19—Robocov
Since the COVID-19 Pandemic began, there have been several efforts to create new technology to mitigate the impact of the COVID-19 Pandemic around the world. One of those efforts is to design a new task force, robots, to deal with fundamental goals such as public safety, clinical care, and continuity of work. However, those characteristics need new products based on features that create them more innovatively and creatively. Those products could be designed using the S4 concept (sensing, smart, sustainable, and social features) presented as a concept able to create a new generation of products. This paper presents a low-cost robot, Robocov, designed as a rapid response against the COVID-19 Pandemic at Tecnologico de Monterrey, Mexico, with implementations of artificial intelligence and the S4 concept for the design. Robocov can achieve numerous tasks using the S4 concept that provides flexibility in hardware and software. Thus, Robocov can impact positivity public safety, clinical care, continuity of work, quality of life, laboratory and supply chain automation, and non-hospital care. The mechanical structure and software development allow Robocov to complete support tasks effectively so Robocov can be integrated as a technological tool for achieving the new normality’s required conditions according to government regulations. Besides, the reconfiguration of the robot for moving from one task (robot for disinfecting) to another one (robot for detecting face masks) is an easy endeavor that only one operator could do. Robocov is a teleoperated system that transmits information by cameras and an ultrasonic sensor to the operator. In addition, pre-recorded paths can be executed autonomously. In terms of communication channels, Robocov includes a speaker and microphone. Moreover, a machine learning algorithm for detecting face masks and social distance is incorporated using a pre-trained model for the classification process. One of the most important contributions of this paper is to show how a reconfigurable robot can be designed under the S3 concept and integrate AI methodologies. Besides, it is important that this paper does not show specific details about each subsystem in the robot.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Future Internet
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cleaning work is a labor-intensive job that frequently exposes workers to substantial occupational hazards. Unfortunately, the outbreak of coronavirus disease 2019 (COVID-19) has increased the pressure on janitors and cleaners to meet the rising need for a safe and hygienic environment, particularly in grocery stores, where the majority of people get their daily necessities. To reduce the occupational hazards and fulfill the new challenges of COVID-19, autonomous cleaning robots, have been designed to complement human workers. However, a lack of understanding of the new generation of cleaning tools’ acceptance may raise safety concerns when they’re deployed. Therefore, a video-based survey was developed and distributed to 32 participants, aiming to assess human acceptance of the cleaning robot in grocery environments during the COVID-19 pandemic. Moreover, the effects of four factors (gender, work experience, knowledge, and pet) that may influence human acceptance of the cleaning robot were also examined. In general, our findings revealed a non-negative human acceptance of the cleaning robot, which is a positive sign of deploying cleaning robots in grocery stores to reduce the workload of employees and decrease COIVID-related anxiety and safety concerns of customers. Furthermore, prior knowledge of robotics was observed to have a significant effect on participants’ acceptance of the cleaning robot ( p = 0.039). 
    more » « less
  2. This article examines 152 reports the use of robots explicitly due to the COVID-19 pandemic reported in the science, trade, and press from 24 Jan 2021 to 23 Jan 2022 (Year 2) and compares with the previously published uses from 24 Jan 2020 to 23 Jan 2021 (Year 1). Of these 152 reports, 80 were new unique instances documented in 25 countries, bringing the total to 420 instances in 52 countries since 2020. The instances did not add new work domains or use cases, though they changed the relative ranking of three use cases. The most notable trend in Year was the shift from a) government or institutional use of robots to protect healthcare workers and the Public to b) personal and business use to enable the continuity of work and education. In Year 1, Public Safety, Clinical Care, and Continuity of Work and Education were the three highest work domains but in Year 2, Continuity of Work and Education had the highest number of instances. 
    more » « less
  3. Botta, Federico (Ed.)
    Early analyses revealed that dark web marketplaces (DWMs) started offering COVID-19 related products (e.g., masks and COVID-19 tests) as soon as the COVID-19 pandemic started, when these goods were in shortage in the traditional economy. Here, we broaden the scope and depth of previous investigations by considering how DWMs responded to an ongoing pandemic after the initial shock. Our dataset contains listings from 194 DWMs collected until July 2021. We start by focusing on vaccines. We find 248 listings offering approved vaccines, like Pfizer/BioNTech and AstraZeneca, as well as vendors offering fabricated proofs of vaccination and COVID-19 passports. Then, we consider COVID-19 related products. We show that, as the regular economy has become able to satisfy the demand of these goods, DWMs have decreased their offer. Next, we analyse the profile of vendors of COVID-19 related products and vaccines. We find that most of them are specialized in a single type of listings and are willing to ship worldwide. Finally, we consider a broader set of listings mentioning COVID-19, in order to assess the general impact of the pandemic on the broader activity of DWMs. Among 10,330 such listings, we show that recreational drugs are the most affected among traditional DWMs product, with COVID-19 mentions steadily increasing since March 2020. We anticipate that our results will be of interest to researchers, practitioners, and law enforcement agencies focused on the study and safeguard of public health. 
    more » « less
  4. null (Ed.)
    The US CDC has recognized moist-heat as one of the most effective and accessible methods of decontaminating N95 masks for reuse in response to the persistent N95 mask shortages caused by the COVID-19 pandemic. However, it is challenging to reliably deploy this technique in healthcare settings due to a lack of smart technologies capable of ensuring proper decontamination conditions of hundreds of masks simultaneously. To tackle these challenges, we developed an open-source wireless sensor platform---VeriMask1 ---that facilitates per-mask verification of the moist-heat decontamination process. VeriMask is capable of monitoring hundreds of masks simultaneously in commercially available heating systems and provides a novel throughput-maximization functionality to help operators optimize the decontamination settings. We evaluate VeriMask in laboratory and real-scenario clinical settings and find that it effectively detects decontamination failures and operator errors in multiple settings and increases the mask decontamination throughput. Our easy-to-use, low-power, low-cost, scalable platform integrates with existing hospital protocols and equipment, and can be broadly deployed in under-resourced facilities to protect front-line healthcare workers by lowering their risk of infection from reused N95 masks. We also memorialize the design challenges, guidelines, and lessons learned from developing and deploying VeriMask during the COVID-19 Pandemic. Our hope is that by reflecting and reporting on this design experience, technologists and front-line health workers will be better prepared to collaborate for future pandemics, regarding mask decontamination, but also other forms of crisis tech. 
    more » « less
  5. Abstract Objective: The aim of this study was to investigate the performance of key hospital units associated with emergency care of both routine emergency and pandemic (COVID-19) patients under capacity enhancing strategies. Methods: This investigation was conducted using whole-hospital, resource-constrained, patient-based, stochastic, discrete-event, simulation models of a generic 200-bed urban U.S. tertiary hospital serving routine emergency and COVID-19 patients. Systematically designed numerical experiments were conducted to provide generalizable insights into how hospital functionality may be affected by the care of COVID-19 pandemic patients along specially designated care paths, under changing pandemic situations, from getting ready to turning all of its resources to pandemic care. Results: Several insights are presented. For example, each day of reduction in average ICU length of stay increases intensive care unit patient throughput by up to 24% for high COVID-19 daily patient arrival levels. The potential of 5 specific interventions and 2 critical shifts in care strategies to significantly increase hospital capacity is also described. Conclusions: These estimates enable hospitals to repurpose space, modify operations, implement crisis standards of care, collaborate with other health care facilities, or request external support, thereby increasing the likelihood that arriving patients will find an open staffed bed when 1 is needed. 
    more » « less