Despite recent progress in abstractive summarization, models often generate summaries with factual errors. Numerous approaches to detect these errors have been proposed, the most popular of which are question answering (QA)-based factuality metrics. These have been shown to work well at predicting summary-level factuality and have potential to localize errors within summaries, but this latter capability has not been systematically evaluated in past research. In this paper, we conduct the first such analysis and find that, contrary to our expectations, QA-based frameworks fail to correctly identify error spans in generated summaries and are outperformed by trivial exact match baselines. Our analysis reveals a major reason for such poor localization: questions generated by the QG module often inherit errors from non-factual summaries which are then propagated further into downstream modules. Moreover, even human-in-the-loop question generation cannot easily offset these problems. Our experiments conclusively show that there exist fundamental issues with localization using the QA framework which cannot be fixed solely by stronger QA and QG models.
more »
« less
A Feasibility Study of Answer-Unaware Question Generation for Education
We conduct a feasibility study into the applicability of answer-agnostic question generation models to textbook passages. We show that a significant portion of errors in such systems arise from asking irrelevant or un-interpretable questions and that such errors can be ameliorated by providing summarized input. We find that giving these models human-written summaries instead of the original text results in a significant increase in acceptability of generated questions (33% → 83%) as determined by expert annotators. We also find that, in the absence of human-written summaries, automatic summarization can serve as a good middle ground.
more »
« less
- Award ID(s):
- 1928474
- PAR ID:
- 10344226
- Date Published:
- Journal Name:
- Findings of the Association for Computational Linguistics: ACL 2022
- Page Range / eLocation ID:
- 1919 to 1926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We address the problem of generating high-quality question-answer pairs for educational materials. Previous work on this problem showed that using summaries as input improves the quality of question generation (QG) over original textbook text and that human-written summaries result in higher quality QG than automatic summaries. In this paper, a) we show that advances in Large Language Models (LLMs) are not yet sufficient to generate quality summaries for QG and b) we introduce a new methodology for enhancing bullet point student notes into fully fledged summaries and find that our methodology yields higher quality QG. We conducted a large-scale human annotation study of generated question-answer pairs for the evaluation of our methodology. In order to aid in future research, we release a new dataset of 9.2K human annotations of generated questions.more » « less
-
Generative artificial intelligence has made significant strides, producing text indistinguishable from human prose and remarkably photorealistic images. Automatically measuring how close the generated data distribution is to the target distribution is central to diagnosing existing models and developing better ones. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore three approaches to statistically estimate these scores: vector quantization, non-parametric estimation, and classifier-based estimation. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of f -divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We demonstrate in the vision domain that MAUVE can identify known properties of generated images on par with or better than existing metrics. In conclusion, we present practical recommendations for using MAUVE effectively with language and image modalities.more » « less
-
We study generating abstractive summaries that are faithful and factually consistent with the given articles. A novel contrastive learning formulation is presented, which leverages both reference summaries, as positive training data, and automatically generated erroneous summaries, as negative training data, to train summarization systems that are better at distinguishing between them. We further design four types of strategies for creating negative samples, to resemble errors made commonly by two state-of-the-art models, BART and PEGASUS, found in our new human annotations of summary errors. Experiments on XSum and CNN/Daily Mail show that our contrastive learning framework is robust across datasets and models. It consistently produces more factual summaries than strong comparisons with post error correction, entailmentbased reranking, and unlikelihood training, according to QA-based factuality evaluation. Human judges echo the observation and find that our model summaries correct more errors.more » « less
-
To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).more » « less
An official website of the United States government

