As major progress is made in open-ended text generation, measuring how close machine-generated text is to human language remains a critical open problem. We introduce MAUVE, a comparison measure for open-ended text generation, which directly compares the learnt distribution from a text generation model to the distribution of human-written text using divergence frontiers. MAUVE scales up to modern text generation models by computing information divergences in a quantized embedding space. Through an extensive empirical study on three open-ended generation tasks, we find that MAUVE identifies known properties of generated text, scales naturally with model size, and correlates with human judgments, with fewer restrictions than existing distributional evaluation metrics.
more »
« less
MAUVE Scores for Generative Models: Theory and Practice
Generative artificial intelligence has made significant strides, producing text indistinguishable from human prose and remarkably photorealistic images. Automatically measuring how close the generated data distribution is to the target distribution is central to diagnosing existing models and developing better ones. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore three approaches to statistically estimate these scores: vector quantization, non-parametric estimation, and classifier-based estimation. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of f -divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We demonstrate in the vision domain that MAUVE can identify known properties of generated images on par with or better than existing metrics. In conclusion, we present practical recommendations for using MAUVE effectively with language and image modalities.
more »
« less
- Award ID(s):
- 2019844
- PAR ID:
- 10503113
- Publisher / Repository:
- Journal of machine learning research
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 24
- ISSN:
- 1532-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, there have been significant advances and wide-scale use of generative AI in natural language generation. Models such as OpenAI’s GPT3 and Meta’s LLaMA are widely used in chatbots, to summarize documents, and to generate creative content. These advances raise concerns about abuses of these models, especially in social media settings, such as large-scale generation of disinformation, manipulation campaigns that use AI-generated content, and personalized scams. We used stylometry (the analysis of style in natural language text) to analyze the style of AI-generated text. Specifically, we applied an existing authorship verification (AV) model that can predict if two documents are written by the same author on texts generated by GPT2, GPT3, ChatGPT and LLaMA. Our AV model was trained only on human-written text and was effectively used in social media settings to analyze cases of abuse. We generated texts by providing the language models with fanfiction snippets and prompting them to complete the rest of it in the same writing style as the original snippet. We then applied the AV model across the texts generated by the language models and the human written texts to analyze the similarity of the writing styles between these texts. We found that texts generated with GPT2 had the highest similarity to the human texts. Texts generated by GPT3 and ChatGPT were very different from the human snippet, and were similar to each other. LLaMA-generated texts had some similarity to the original snippet but also has similarities with other LLaMA-generated texts and texts from other models. We then conducted a feature analysis to identify the features that drive these similarity scores. This analysis helped us answer questions like which features distinguish the language style of language models and humans, which features are different across different models, and how these linguistic features change over different language model versions. The dataset and the source code used in this analysis have been made public to allow for further analysis of new language models.more » « less
-
Diffusion-based Text-to-Image (T2I) models have achieved impressive success in generating high-quality images from textual prompts. While large language models (LLMs) effectively leverage Direct Preference Optimization (DPO) for fine-tuning on human preference data without the need for reward models, diffusion models have not been extensively explored in this area. Current preference learning methods applied to T2I diffusion models immediately adapt existing techniques from LLMs. However, this direct adaptation introduces an estimated loss specific to T2I diffusion models. This estimation can potentially lead to suboptimal performance through our empirical results. In this work, we propose Direct Score Preference Optimization (DSPO), a novel algorithm that aligns the pretraining and fine-tuning objectives of diffusion models by leveraging score matching, the same objective used during pretraining. It introduces a new perspective on preference learning for diffusion models. Specifically, DSPO distills the score function of human-preferred image distributions into pretrained diffusion models, fine-tuning the model to generate outputs that align with human preferences. We theoretically show that DSPO shares the same optimization direction as reinforcement learning algorithms in diffusion models under certain conditions. Our experimental results demonstrate that DSPO outperforms preference learning baselines for T2I diffusion models in human preference evaluation tasks and enhances both visual appeal and prompt alignment of generated images.more » « less
-
Diversity is an important criterion for many areas of machine learning (ML), including generative modeling and dataset curation. However, existing metrics for measuring diversity are often domain-specific and limited in flexibility. In this paper we address the diversity evaluation problem by proposing the Vendi Score, which connects and extends ideas from ecology and quantum statistical mechanics to ml. The Vendi Score is defined as the exponential of the Shannon entropy of the eigenvalues of a similarity matrix. This matrix is induced by a user-defined similarity function applied to the sample to be evaluated for diversity. In taking a similarity function as input, the Vendi Score enables its user to specify any desired form of diversity. Importantly, unlike many existing metrics in ML, the Vendi Score does not require a reference dataset or distribution over samples or labels, it is therefore general and applicable to any generative model, decoding algorithm, and dataset from any domain where similarity can be defined. We showcase the Vendi Score on molecular generative modeling where we found it addresses shortcomings of the current diversity metric of choice in that domain. We also applied the Vendi Score to generative models of images and decoding algorithms of text where we found it confirms known results about diversity in those domains. Furthermore, we used the Vendi Score to measure mode collapse, a known shortcoming of generative adversarial networks (GANs). In particular, the Vendi Score revealed that even GANs that capture all the modes of a labelled dataset can be less diverse than the original dataset. Finally, the interpretability of the Vendi Score allowed us to diagnose several benchmark ML datasets for diversity, opening the door for diversity-informed data augmentation.more » « less
-
Normalizing flows provide an elegant approach to generative modeling that allows for efficient sampling and exact density evaluation of unknown data distributions. However, current techniques have significant limitations in their expressivity when the data distribution is supported on a lowdimensional manifold or has a non-trivial topology. We introduce a novel statistical framework for learning a mixture of local normalizing flows as “chart maps” over the data manifold. Our framework augments the expressivity of recent approaches while preserving the signature property of normalizing flows, that they admit exact density evaluation. We learn a suitable atlas of charts for the data manifold via a vector quantized autoencoder (VQ-AE) and the distributions over them using a conditional flow. We validate experimentally that our probabilistic framework enables existing approaches to better model data distributions over complex manifolds.more » « less
An official website of the United States government

