skip to main content

Title: A Second look at Exponential and Cosine Step Sizes: Simplicity, Adaptivity, and Performance
Stochastic Gradient Descent (SGD) is a popular tool in training large-scale machine learning models. Its performance, however, is highly variable, depending crucially on the choice of the step sizes. Accordingly, a variety of strategies for tuning the step sizes have been proposed, ranging from coordinate-wise approaches (a.k.a. “adaptive” step sizes) to sophisticated heuristics to change the step size in each iteration. In this paper, we study two step size schedules whose power has been repeatedly confirmed in practice: the exponential and the cosine step sizes. For the first time, we provide theoretical support for them proving convergence rates for smooth non-convex functions, with and without the Polyak-Łojasiewicz (PL) condition. Moreover, we show the surprising property that these two strategies are adaptive to the noise level in the stochastic gradients of PL functions. That is, contrary to polynomial step sizes, they achieve almost optimal performance without needing to know the noise level nor tuning their hyperparameters based on it. Finally, we conduct a fair and comprehensive empirical evaluation of real-world datasets with deep learning architectures. Results show that, even if only requiring at most two hyperparameters to tune, these two strategies best or match the performance of various finely-tuned state-of-the-art strategies.  more » « less
Award ID(s):
1925930 2022446 1908111
Author(s) / Creator(s):
; ;
Meila, Marina; Zhang, Tong
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The performance of private gradient-based optimization algorithms is highly dependent on the choice of step size (or learning rate) which often requires non-trivial amount of tuning. In this paper, we introduce a stochastic variant of classic backtracking line search algorithm that satisfies Renyi differential privacy. Specifically, the proposed algorithm adaptively chooses the step size satisfying the the Armijo condition (with high probability) using noisy gradients and function estimates. Furthermore, to improve the probability with which the chosen step size satisfies the condition, it adjusts per-iteration privacy budget during runtime according to the reliability of noisy gradient. A naive implementation of the backtracking search algorithm may end up using unacceptably large privacy budget as the ability of adaptive step size selection comes at the cost of extra function evaluations. The proposed algorithm avoids this problem by using the sparse vector technique combined with the recent privacy amplification lemma. We also introduce a privacy budget adaptation strategy in which the algorithm adaptively increases the budget when it detects that directions pointed by consecutive gradients are drastically different. Extensive experiments on both convex and non-convex problems show that the adaptively chosen step sizes allow the proposed algorithm to efficiently use the privacy budget and show competitive performance against existing private optimizers. 
    more » « less
  2. Optimization problems with group sparse regularization are ubiquitous in various popular downstream applications, such as feature selection and compression for Deep Neural Networks (DNNs). Nonetheless, the existing methods in the literature do not perform particularly well when such regularization is used in combination with a stochastic loss function. In particular, it is challenging to design a computationally efficient algorithm with a convergence guarantee and can compute group-sparse solutions. Recently, a half-space stochastic projected gradient ({\tt HSPG}) method was proposed that partly addressed these challenges. This paper presents a substantially enhanced version of {\tt HSPG} that we call~{\tt AdaHSPG+} that makes two noticeable advances. First, {\tt AdaHSPG+} is shown to have a stronger convergence result under significantly looser assumptions than those required by {\tt HSPG}. This improvement in convergence is achieved by integrating variance reduction techniques with a new adaptive strategy for iteratively predicting the support of a solution. Second, {\tt AdaHSPG+} requires significantly less parameter tuning compared to {\tt HSPG}, thus making it more practical and user-friendly. This advance is achieved by designing automatic and adaptive strategies for choosing the type of step employed at each iteration and for updating key hyperparameters. The numerical effectiveness of our proposed {\tt AdaHSPG+} algorithm is demonstrated on both convex and non-convex benchmark problems. The source code is available at \url{}. 
    more » « less
  3. We propose a tuning-free dynamic SGD step size formula, which we call Distance over Gradients (DoG). The DoG step sizes depend on simple empirical quantities (distance from the initial point and norms of gradients) and have no “learning rate” parameter. Theoretically, we show that, for stochastic convex optimization, a slight variation of the DoG formula enjoys strong, high-probability parameter-free convergence guarantees and iterate movement bounds. Empirically, we consider a broad range of vision and language transfer learning tasks, and show that DoG’s performance is close to that of SGD with tuned learning rate. We also propose a per-layer variant of DoG that generally outperforms tuned SGD, approaching the performance of tuned Adam. A PyTorch implementation of our algorithms is available at 
    more » « less
  4. The emphasis on conceptual learning and the development of adaptive instructional design are both emerging areas in science and engineering education. Instructors are writing their own conceptual questions to promote active learning during class and utilizing pools of these questions in assessments. For adaptive assessment strategies, these questions need to be rated based on difficulty level (DL). Historically DL has been determined from the performance of a suitable number of students. The research study reported here investigates whether instructors can save time by predicting DL of newly made conceptual questions without the need for student data. In this paper, we report on the development of one component in an adaptive learning module for materials science – specifically on the topic of crystallography. The summative assessment element consists of five DL scales and 15 conceptual questions This adaptive assessment directs students based on their previous performances and the DL of the questions. Our five expert participants are faculty members who have taught the introductory Materials Science course multiple times. They provided predictions for how many students would answer each question correctly during a two-step process. First, predictions were made individually without an answer key. Second, experts had the opportunity to revise their predictions after being provided an answer key in a group discussion. We compared expert predictions with actual student performance using results from over 400 students spanning multiple courses and terms. We found no clear correlation between expert predictions of the DL and the measured DL from students. Some evidence shows that discussion during the second step made expert predictions closer to student performance. We suggest that, in determining the DL for conceptual questions, using predictions of the DL by experts who have taught the course is not a valid route. The findings in this paper can be applied to assessments in both in-person, hybrid, and online settings and is applicable to subject matter beyond materials science. 
    more » « less
  5. Efficient simulation of SDEs is essential in many applications, particularly for ergodic systems that demand efficient simulation of both short-time dynamics and large-time statistics. However, locally Lipschitz SDEs often require special treatments such as implicit schemes with small time-steps to accurately simulate the ergodic measures. We introduce a framework to construct inference-based schemes adaptive to large time-steps (ISALT) from data, achieving a reduction in time by several orders of magnitudes. The key is the statistical learning of an approximation to the infinite-dimensional discrete-time flow map. We explore the use of numerical schemes (such as the Euler-Maruyama, the hybrid RK4, and an implicit scheme) to derive informed basis functions, leading to a parameter inference problem. We introduce a scalable algorithm to estimate the parameters by least squares, and we prove the convergence of the estimators as data size increases.

    We test the ISALT on three non-globally Lipschitz SDEs: the 1D double-well potential, a 2D multiscale gradient system, and the 3D stochastic Lorenz equation with a degenerate noise. Numerical results show that ISALT can tolerate time-step magnitudes larger than plain numerical schemes. It reaches optimal accuracy in reproducing the invariant measure when the time-step is medium-large.

    more » « less