skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multilingual CS Education Pathways: Implications for Vertically-Scaled Assessment
The expansion of computer science (CS) into K-12 contexts has resulted in a diverse ecosystem of curricula designed for various grade levels, teaching a variety of concepts, and using a wide array of different programming languages and environments. Many students will learn more than one programming language over the course of their studies. There is a growing need for computer science assessment that can measure student learning over time, but the multilingual learning pathways create two challenges for assessment in computer science. First, there are not validated assessments for all of the programming languages used in CS classrooms. Second, it is difficult to measure growth in student understanding over time when students move between programming languages as they progress in their CS education. In this position paper, we argue that the field of computing education research needs to develop methods and tools to better measure students' learning over time and across the different programming languages they learn along the way. In presenting this position, we share data that shows students approach assessment problems differently depending on the programming language, even when the problems are conceptually isomorphic, and discuss some approaches for developing multilingual assessments of student learning over time.  more » « less
Award ID(s):
1348866
PAR ID:
10353799
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SIGCSE 2022: Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
Volume:
1
Page Range / eLocation ID:
64 to 70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been significant progress in increasing the access to computing education for many K-12 students, including states adopting computer science (CS) standards and/or requiring CS courses. This includes the creation of block-based programming languages to make programming more accessible to younger students. Despite this progress, a new challenge has emerged: Students often struggle to transfer conceptual knowledge when transitioning to a new programming language (e.g., transitioning to a text-based programming after learning a block-based programming language). This poster presents the results of teacher interviews regarding the examples of knowledge transfer they observe in their classrooms. These interviews are part of an overarching project that aims to address the challenge of knowledge transfer between programming languages by developing a framework to support such transfer and deliver curricular supports that can be used to aid students’ productive knowledge transfer between programming languages. 
    more » « less
  2. More students are encountering computer science at multiple grade levels and so are learning more than one programming language. There is an ever-growing body of research describing how students transfer knowledge from one language to another. Current research shows that transfer helps students learn a second programming language in the interim and improves attitudes and retention of students in computer science. While novice programmers generally struggle with the same concepts [1, 12], the exact difficulties and benefits of the transition to a second programming language differ depending on the programming languages the student is learning. In order to best serve students of different backgrounds and maintain their interest in the subject, the details of transfer for different programming language combinations must be understood. This poster surveys and analyzes the current research on transfer and provides a summary of the variety of challenges and advantages students face in learning a second programming language. Additionally, interdisciplinary pedagogical approaches are discussed, integrating perspectives from applied linguistics as novel solutions to the specific issues faced in programming language transfer. 
    more » « less
  3. null (Ed.)
    Pair programming is a popular strategy in computer science education to teach programming to novices. In this study, we examined the effect of three different pair programming conditions on up- per elementary school students’ CS conceptual understanding. The three conditions were one-computer with roles (1C with roles), two computers without roles (2C no roles), and two computers with roles (2C with roles). These students were engaged in four days of computer programming activities and took the CS concept assessment, CS attitudes, and collaboration perceptions before and after the activities. We used the validated E-CSCA (Elementary Computer Science Concepts Assessment) to measure elementary students’ understanding of CS concepts. We tested the relation- ship of different pair programming conditions on the students’ CS conceptual understanding and found that different conditions impacted students’ CS conceptual understanding, wherein students in 2C roles demonstrated better CS learning than the other two conditions. The results also showed no changes in students’ CS attitudes and perceptions of collaboration before and after the activities. Furthermore, the results indicated no significant impact of these attitudinal factors on students’ learning CS concepts in pair programming settings. Our study highlights the importance of the roles and number of computers in pair programming settings, especially for elementary students. 
    more » « less
  4. The rapid expansion of K-12 CS education has made it critical to support CS teachers, many of whom are new to teaching CS, with the necessary resources and training to strengthen their understanding of CS concepts and how to effectively teach CS. CS teachers are often tasked with teaching different curricula using different programming languages in different grades or during different school years, and tend to receive different professional development (PD) for each curriculum they are required to teach. This often leads to a lack of deep understanding of the underlying CS concepts and how different curricula address the same concepts in different ways. Empowering teachers to develop a deep understanding of CS standards, and use formative assessments to recognize common student challenges associated with the standards, will enable teachers to provide more effective CS instruction, irrespective of the curriculum and/or programming language they are tasked with using. This position paper advocates supporting CS teacher professional learning by supplementing existing curriculum-specific teacher PD with standards-aligned PD that focuses on teachers' conceptual understanding of CS standards and ability to adapt instruction based on student understanding of concepts underlying the CS standards. We share concrete examples of how to design standards-aligned educative resources and instructionally supportive tools that promote teachers' understanding of CS standards and common student challenges and develop teachers' formative assessment literacy, all essential components of CS pedagogical content knowledge. 
    more » « less
  5. null (Ed.)
    Subgoal labels are function-based instructional explanations that describe the problem-solving steps to the learner, highlighting the solution process. There is strong evidence that the use of subgoal labels within worked examples improves student learning in other STEM fields. Initial research shows that using subgoal labels within computer science improves student learning, but this has only been tested using a single programming concept (indefinite loops) with text-based programming languages. The proposers are currently expanding subgoal labels to the main programming concepts taught in an introductory programming course using an imperative programming language. In this BOF we seek to uncover tacit knowledge that programming instructors have in order to develop instructional materials that bridge the gap between students, who are CS novices, and instructors, who are CS experts, to improve learning for students who are under-prepared for or struggle in CS1. We will be seeking feedback on the selection of programming topics to be covered, the defined subgoals for those topics and the worked examples created for instructional purposes. 
    more » « less