Surface adsorption of two commonly detected emerging contaminants, amlodipine (AMP) and carbamazepine (CBZ), onto model colloidal microplastics, natural organic matter (NOM), and fullerene nanomaterials have been investigated. It is found that AMP accumulation at these colloidal–aqueous interfaces is markedly higher than that of CBZ. Measurements of surface excess and particle zeta potential, along with pH-dependent adsorption studies, reveal a distinct influence of colloidal functional group on the adsorption properties of these pharmaceuticals. AMP shows a clear preference for a surface containing carboxylic group compared to an amine modified surface. CBZ, in contrast, exhibit a pH-dependent surface proclivity for both of these microparticles. The type of interactions and molecular differences with respect to structural rigidity and charge properties explain these observed behaviors. In this work, we also demonstrate a facile approach in fabricating uniform microspheres coated with NOM and C 60 nanoclusters. Subsequent binding studies on these surfaces show considerable adsorption on the NOM surface but a minimal uptake of CBZ by C 60 . Adsorption induced colloidal aggregation was not observed. These findings map out the extent of contaminant removal by colloids of different surface properties available in the aquatic environment. The methodology developed for the adsorption study also opens up the possibility for further investigations into colloidal–contaminant interactions.
more »
« less
Emerging Environmental Contaminants at the Air/Aqueous and Biological Soft Interfaces
Detection of micropollutants, such as pharmaceuticals and industrial chemicals with endocrine disrupting potency, in ground and surface waters is of emerging concern. Within the aquatic environment, these emerging contaminants (ECs) can interact with various surfaces and biological membranes. The implication is that, provided the ECs exhibit sufficient affinity, these surfaces can modulate their fate and transport properties. Knowledge of the types of interaction with biomembranes can also help decipher their impact on the aquatic organisms. Here, we show that selected pharmaceuticals and endocrine disrupting chemicals (EDCs) – amlodipine (AMP), carbamazepine (CBZ), β-estradiol (β-ED), and 4-propylphenol (4-PP) - exhibit proclivity for the air/aqueous interface. These compounds also interact differently with a zwitterionic phospholipid membrane. The adsorption free energy for the water surface, in the order of increasing affinity, is as follows: 4-PP < AMP < β-ED~CBZ. Of the four compounds studied, 4-PP has the greatest extent of disruption of the phospholipid membrane. Our results suggest that the extent of interaction with water surface and biological membrane is dependent upon the chemical nature of these micropollutants. This fundamental study highlights the importance of interfacial chemistry on the fate and transport of emerging contaminants in natural waters.
more »
« less
- Award ID(s):
- 1808468
- PAR ID:
- 10344359
- Date Published:
- Journal Name:
- Environmental Science: Advances
- ISSN:
- 2754-7000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The presence of contaminants of emerging concerns (CECs) such as pharmaceuticals and personal care products, endocrine disrupting compounds (EDCs), per/poly‐fluorinated substances (PFAS), pesticides, and nanomaterials poses significant challenges to the environment and human health. This review discusses the current status of electrochemical sensing methods and their potential as low‐cost analytical platforms for the detection and characterization of emerging contaminants. Recent developments in advanced materials and fabrication techniques such as electrophoretic deposition, layer‐by‐layer deposition, roll‐to‐roll and 3D printing techniques, and the scalable manufacturing of low‐cost portable electrochemical devices are discussed. Examples of detection mechanisms, electrode modification procedures, device configuration, and their performance along with recent developments in fundamental electrochemistry, particularly nanoimpact methods, are provided to demonstrate the capabilities of these methods for the environmental monitoring of CECs. Finally, a critical discussion of future research needs, detection challenges, and opportunities is provided to demonstrate how electrochemistry can be used to advance field monitoring of these chemicals. These methods can be used as complementary or alternative methods to the currently used laboratory‐based analytical instrumentation to facilitate large‐scale studies and manage risks associated with the presence of CECs in the environment and other matrices.more » « less
-
Previously, we reported that microplastic volatile organic compounds are present within the Chrysaora chesapeakei of Chesapeake Bay, MD. In this study, we report the presence of contaminants of emerging concern (CECs) on the hydrophobic surface of microplastic (MP) particles extracted from the C. chesapeakei, detected by Raman spectroscopy and identified by Wiley’s KnowItAll Software with IR & Raman Spectral Libraries. C. chesapeakei encounters various microplastics and emerging contaminants as it floats through the depths of the Patuxent River water column. This study identifies subsuming CECs found directly on microplastics from within C. chesapeakei in the wild using Raman spectroscopy. Among the extracted microplastics, some of the emerging contaminants found on the different microplastics were pesticides, pharmaceuticals, minerals, food derivatives, wastewater treatment chemicals, hormones, and recreational drugs. Our results represent the first of such findings in C. chesapeakei, obtained directly from the field, and indicate C. chesapeakei’s relationship with microplastics, with this species serving as a vector of emerging contaminants through the marine food web. This paper further illustrates a relationship between different types of plastics that attract dissimilar types of emerging pollutants in the same surrounding environmental conditions, underscoring the urgent need for further research to fully understand and mitigate the risks that MPs coexist with contaminants.more » « less
-
Direct potable reuse of wastewater is attractive as the demand for potable water increases. However, the presence of organic micropollutants in industrial and domestic wastewater is a major health and environmental concern. Conventional wastewater treatment processes are not designed to remove these compounds. Further many of these emerging pollutants are not regulated. Membrane bioreactor based biological wastewater treatment has recently become a preferred method for treating municipal and other industrial wastewaters. Here the removal of five selected micropollutants representing different classes of emerging micropollutants has been investigated using a membrane bioreactor. Acetaminophen, amoxicillin, atrazine, estrone, and triclosan were spiked into wastewaters obtained from a local wastewater treatment facility prior to introduction to the membrane bioreactor containing both anoxic and aerobic tanks. Removal of these compounds by adsorption and biological degradation was determined for both the anoxic and aerobic processes. The removal as a function of operating time was investigated. The results obtained here suggest that removal may be related to the chemical structure of the micropollutants.more » « less
-
Abstract Contaminants of emerging concern (CECs), including pharmaceutical compounds, have been found in irrigation waters and have found their way into crops through the uptake of contaminated water. Many farms in Puerto Rico are irrigated with water that might have considerable levels of CECs. The objective of this study was to determine the quantity of commonly detected CEC adsorbed onto soil particles of two contrasting tropical soils of Puerto Rico (Fraternidad, basic Vertisol [fine, smectitic, isohyperthermic Typic Haplusterts], and Mariana series, acid Ultisol [fine, mixed, active, isohyperthermic Typic Haplohumults]). A CECs single point and multicomponent adsorption experiments were carried out using the batch equilibrium technique. The CECs were naproxen (NPX), O‐desmethylnaproxen (O‐DesNPX), caffeine (CFN), paraxanthine (PX), carbamazepine (CBZ), carbamazepine‐10, 11‐epoxide (Ep‐CBZ), clofibric acid (ClofA), and salicylic acid (SA). The CEC concentrations in water before and after adsorption were determined using a triple quadrupole mass spectroscopy liquid chromatography. The results showed that SA was highly adsorbed by both soils, although in greater concentrations in Fraternidad than Mariana, probably because of greater cation‐bridging. Paraxanthine was adsorbed only in the multicomponent test, probably as a co‐adsorbate. Caffeine, CBZ, and their metabolites were adsorbed in both soils in lesser concentrations than SA and PX. However, NPX and ClofA were not adsorbed by either soil type. Thus, these CECs could potentially move more freely through the soil matrix and reach soil roots in greater quantities than other contaminants.more » « less
An official website of the United States government

