Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life.
more »
« less
Advances in electrochemical detection methods for measuring contaminants of emerging concerns
Abstract The presence of contaminants of emerging concerns (CECs) such as pharmaceuticals and personal care products, endocrine disrupting compounds (EDCs), per/poly‐fluorinated substances (PFAS), pesticides, and nanomaterials poses significant challenges to the environment and human health. This review discusses the current status of electrochemical sensing methods and their potential as low‐cost analytical platforms for the detection and characterization of emerging contaminants. Recent developments in advanced materials and fabrication techniques such as electrophoretic deposition, layer‐by‐layer deposition, roll‐to‐roll and 3D printing techniques, and the scalable manufacturing of low‐cost portable electrochemical devices are discussed. Examples of detection mechanisms, electrode modification procedures, device configuration, and their performance along with recent developments in fundamental electrochemistry, particularly nanoimpact methods, are provided to demonstrate the capabilities of these methods for the environmental monitoring of CECs. Finally, a critical discussion of future research needs, detection challenges, and opportunities is provided to demonstrate how electrochemistry can be used to advance field monitoring of these chemicals. These methods can be used as complementary or alternative methods to the currently used laboratory‐based analytical instrumentation to facilitate large‐scale studies and manage risks associated with the presence of CECs in the environment and other matrices.
more »
« less
- Award ID(s):
- 2141017
- PAR ID:
- 10361171
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Electrochemical Science Advances
- Volume:
- 2
- Issue:
- 6
- ISSN:
- 2698-5977
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nontarget analysis using liquid chromatography–high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. However, identification of these analytes can be quite costly or taxing without proper analytical standards. To circumvent this problem we utilize Quantitative structure-retention relationships (QSRR) models to predict elution order and retention times. Properties calculated from density functional theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) theory are used to produce our QSRR models, which can be calculated for virtually any analyte. We show that this methodology has been successful in identification of per- /poly-fluoroalkyl substances (PFAS) and other contaminants. Nontarget analysis using liquid chromatography– high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. However, identification of these analytes can be quite costly or taxing without proper analytical standards. To circumvent this problem we utilize Quantitative structureretention relationships (QSRR) models to predict elution order and retention times. Properties calculated from density functional theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) theory are used to produce our QSRR models, which can be calculated for virtually any analyte. We show that this methodology has beenmore » « less
-
null (Ed.)Monitoring water quality by detecting chemical and biological contaminants is critical to ensuring the provision and discharge of clean water, hence protecting human health and the ecosystem. Among the available analytical techniques, infrared (IR) spectroscopy provides sensitive and selective detection of multiple water contaminants. In this work, we present an application of IR spectroscopy for qualitative and quantitative assessment of chemical and biological water contaminants. We focus on in-line detection of nitrogen pollutants in the form of nitrate and ammonium for wastewater treatment process control and automation. We discuss the effects of water quality parameters such as salinity, pH, and temperature on the IR spectra of nitrogen pollutants. We then focus on application of the sensor for detection of contaminants of emerging concern, such as arsenic and Per- and polyfluoroalkyl substances (PFAS) in drinking water. We demonstrate the use of multivariate statistical analysis for automated data processing in complex fluids. Finally, we discuss application of IR spectroscopy for detecting biological water contaminants. We use the metabolomic signature of E. coli bacteria to determine its presence in water as well as distinguish between different strains of bacteria. Overall, this work shows that IR spectroscopy is a promising technique for monitoring both chemical and biological contaminants in water and has the potential for real-time, inline water quality monitoring.more » « less
-
Recent developments in the use of artificial intelligence in the diagnosis and monitoring of glaucoma are discussed. To set the context and fix terminology, a brief historic overview of artificial intelligence is provided, along with some fundamentals of statistical modeling. Next, recent applications of artificial intelligence techniques in glaucoma diagnosis and the monitoring of glaucoma progression are reviewed, including the classification of visual field images and the detection of glaucomatous change in retinal nerve fiber layer thickness. Current challenges in the direct application of artificial intelligence to further our understating of this disease are also outlined. The article also discusses how the combined use of mathematical modeling and artificial intelligence may help to address these challenges, along with stronger communication between data scientists and clinicians.more » « less
-
Previously, we reported that microplastic volatile organic compounds are present within the Chrysaora chesapeakei of Chesapeake Bay, MD. In this study, we report the presence of contaminants of emerging concern (CECs) on the hydrophobic surface of microplastic (MP) particles extracted from the C. chesapeakei, detected by Raman spectroscopy and identified by Wiley’s KnowItAll Software with IR & Raman Spectral Libraries. C. chesapeakei encounters various microplastics and emerging contaminants as it floats through the depths of the Patuxent River water column. This study identifies subsuming CECs found directly on microplastics from within C. chesapeakei in the wild using Raman spectroscopy. Among the extracted microplastics, some of the emerging contaminants found on the different microplastics were pesticides, pharmaceuticals, minerals, food derivatives, wastewater treatment chemicals, hormones, and recreational drugs. Our results represent the first of such findings in C. chesapeakei, obtained directly from the field, and indicate C. chesapeakei’s relationship with microplastics, with this species serving as a vector of emerging contaminants through the marine food web. This paper further illustrates a relationship between different types of plastics that attract dissimilar types of emerging pollutants in the same surrounding environmental conditions, underscoring the urgent need for further research to fully understand and mitigate the risks that MPs coexist with contaminants.more » « less
An official website of the United States government
