The goal of domain adaptation is to train a high-performance predictive model on the target domain data by using knowledge from the source domain data, which has different but related data distribution. In this paper, we consider unsupervised domain adaptation where we have labelled source domain data but unlabelled target domain data. Our solution to unsupervised domain adaptation is to learn a domain- invariant representation that is also category discriminative. Domain- invariant representations are realized by minimizing the domain discrepancy. To minimize the domain discrepancy, we propose a novel graph- matching metric between the source and target domain representations. Minimizing this metric allows the source and target representations to be in support of each other. We further exploit confident unlabelled target domain samples and their pseudo-labels to refine our proposed model. We expect the refining step to improve the performance further. This is validated by performing experiments on standard image classification adaptation datasets. Results showed our proposed approach out-perform previous domain-invariant representation learning approaches.
more »
« less
Glocal Alignment for Unsupervised Domain Adaptation
Traditional unsupervised domain adaptation methods attempt to align source and target domains globally and are agnostic to the categories of the data points. This results in an inaccurate categorical alignment and diminishes the classification performance on the target domain. In this paper, we alter existing adversarial domain alignment methods to adhere to category alignment by imputing category information. We partition the samples based on category using source labels and target pseudo labels and then apply domain alignment for every category. Our proposed modification provides a boost in performance even with a modest pseudo label estimator. We evaluate our approach on 4 popular domain alignment loss functions using object recognition and digit datasets.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10344390
- Date Published:
- Journal Name:
- MULL 2021 - Proceedings of the 1st Workshop on Multimedia Understanding with Less Labeling, co-located with ACM MM 2021
- Page Range / eLocation ID:
- 45 to 51
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Solving the domain shift problem during inference is essential in medical imaging as most deep-learning based solutions suffer from it. In practice, domain shifts are tackled by performing Unsupervised Domain Adaptation (UDA), where a model is adapted to an unlabeled target domain by leveraging the labelled source domain. In medical scenarios, the data comes with huge privacy concerns making it difficult to apply standard UDA techniques. Hence, a closer clinical setting is Source-Free UDA (SFUDA), where we have access to source trained model but not the source data during adaptation. Methods trying to solve SFUDA typically address the domain shift using pseudo-label based self-training techniques. However due to domain shift, these pseudo-labels are usually of high entropy and denoising them still does not make them perfect labels to supervise the model. Therefore, adapting the source model with noisy pseudo labels reduces its segmentation capability while addressing the domain shift. To this end, we propose a two-stage approach for source-free domain adaptive image segmentation: 1) Target-specific adaptation followed by 2) Task-specific adaptation. In the Stage-I, we focus on learning target-specific representation and generating high-quality pseudo labels by leveraging a proposed ensemble entropy minimization loss and selective voting strategy. In Stage II, we focus on improving segmentation performance by utilizing teacher-student self-training and augmentation-guided consistency loss, leveraging the pseudo labels obtained from Stage I. We evaluate our proposed method on both 2D fundus datasets and 3D MRI volumes across 7 different domain shifts where we achieve better performance than recent UDA and SF-UDA methods for medical image segmentation. Code is available at https://github.com/Vibashan/tt-sfuda.more » « less
-
Recent advancements in deep learning-based wearable human action recognition (wHAR) have improved the capture and classification of complex motions, but adoption remains limited due to the lack of expert annotations and domain discrepancies from user variations. Limited annotations hinder the model's ability to generalize to out-of-distribution samples. While data augmentation can improve generalizability, unsupervised augmentation techniques must be applied carefully to avoid introducing noise. Unsupervised domain adaptation (UDA) addresses domain discrepancies by aligning conditional distributions with labeled target samples, but vanilla pseudo-labeling can lead to error propagation. To address these challenges, we propose μDAR, a novel joint optimization architecture comprised of three functions: (i) consistency regularizer between augmented samples to improve model classification generalizability, (ii) temporal ensemble for robust pseudo-label generation and (iii) conditional distribution alignment to improve domain generalizability. The temporal ensemble works by aggregating predictions from past epochs to smooth out noisy pseudo-label predictions, which are then used in the conditional distribution alignment module to minimize kernel-based class-wise conditional maximum mean discrepancy (kCMMD) between the source and target feature space to learn a domain invariant embedding. The consistency-regularized augmentations ensure that multiple augmentations of the same sample share the same labels; this results in (a) strong generalization with limited source domain samples and (b) consistent pseudo-label generation in target samples. The novel integration of these three modules in μDAR results in a range of ~ 4-12% average macro-F1 score improvement over six state-of-the-art UDA methods in four benchmark wHAR datasets.more » « less
-
The scarcity of labeled data has traditionally been the primary hindrance in building scalable supervised deep learning models that can retain adequate performance in the presence of various heterogeneities in sample distributions. Domain adaptation tries to address this issue by adapting features learned from a smaller set of labeled samples to that of the incoming unlabeled samples. The traditional domain adaptation approaches normally consider only a single source of labeled samples, but in real world use cases, labeled samples can originate from multiple-sources – providing motivation for multi-source domain adaptation (MSDA). Several MSDA approaches have been investigated for wearable sensor-based human activity recognition (HAR) in recent times, but their performance improvement compared to single source counterpart remained marginal. To remedy this performance gap that, we explore multiple avenues to align the conditional distributions in addition to the usual alignment of marginal ones. In our investigation, we extend an existing multi-source domain adaptation approach under semi-supervised settings. We assume the availability of partially labeled target domain data and further explore the pseudo labeling usage with a goal to achieve a performance similar to the former. In our experiments on three publicly available datasets, we find that a limited labeled target domain data and pseudo label data boost the performance over the unsupervised approach by 10-35% and 2-6%, respectively, in various domain adaptation scenarios.more » « less
-
Domain adaptation has become an attractive learning paradigm, as it can leverage source domains with rich labels to deal with classification tasks in an unlabeled target domain. A few recent studies develop domain adaptation approaches for graph-structured data. In the case of node classification task, current domain adaptation methods only focus on the closed-set setting, where source and target domains share the same label space. A more practical assumption is that the target domain may contain new classes that are not included in the source domain. Therefore, in this paper, we introduce a novel and challenging problem for graphs, i.e., open-set domain adaptive node classification, and propose a new approach to solve it. Specifically, we develop an algorithm for efficient knowledge transfer from a labeled source graph to an unlabeled target graph under a separate domain alignment (SDA) strategy, in order to learn discriminative feature representations for the target graph. Our goal is to not only correctly classify target nodes into the known classes, but also classify unseen types of nodes into an unknown class. Experimental results on real-world datasets show that our method outperforms existing methods on graph domain adaptation.more » « less