skip to main content


Title: Glocal Alignment for Unsupervised Domain Adaptation
Traditional unsupervised domain adaptation methods attempt to align source and target domains globally and are agnostic to the categories of the data points. This results in an inaccurate categorical alignment and diminishes the classification performance on the target domain. In this paper, we alter existing adversarial domain alignment methods to adhere to category alignment by imputing category information. We partition the samples based on category using source labels and target pseudo labels and then apply domain alignment for every category. Our proposed modification provides a boost in performance even with a modest pseudo label estimator. We evaluate our approach on 4 popular domain alignment loss functions using object recognition and digit datasets.  more » « less
Award ID(s):
1828010
NSF-PAR ID:
10344390
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MULL 2021 - Proceedings of the 1st Workshop on Multimedia Understanding with Less Labeling, co-located with ACM MM 2021
Page Range / eLocation ID:
45 to 51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of domain adaptation is to train a high-performance predictive model on the target domain data by using knowledge from the source domain data, which has different but related data distribution. In this paper, we consider unsupervised domain adaptation where we have labelled source domain data but unlabelled target domain data. Our solution to unsupervised domain adaptation is to learn a domain- invariant representation that is also category discriminative. Domain- invariant representations are realized by minimizing the domain discrepancy. To minimize the domain discrepancy, we propose a novel graph- matching metric between the source and target domain representations. Minimizing this metric allows the source and target representations to be in support of each other. We further exploit confident unlabelled target domain samples and their pseudo-labels to refine our proposed model. We expect the refining step to improve the performance further. This is validated by performing experiments on standard image classification adaptation datasets. Results showed our proposed approach out-perform previous domain-invariant representation learning approaches. 
    more » « less
  2. We address the challenge of getting efficient yet accurate recognition systems with limited labels. While recognition models improve with model size and amount of data, many specialized applications of computer vision have severe resource constraints both during training and inference. Transfer learning is an effective solution for training with few labels, however often at the expense of a compu- tationally costly fine-tuning of large base models. We propose to mitigate this unpleasant trade-off between compute and accuracy via semi-supervised cross- domain distillation from a set of diverse source models. Initially, we show how to use task similarity metrics to select a single suitable source model to distill from, and that a good selection process is imperative for good downstream performance of a target model. We dub this approach DISTILLNEAREST. Though effective, DISTILLNEAREST assumes a single source model matches the target task, which is not always the case. To alleviate this, we propose a weighted multi-source distilla- tion method to distill multiple source models trained on different domains weighted by their relevance for the target task into a single efficient model (named DISTILL- WEIGHTED). Our methods need no access to source data, and merely need features and pseudo-labels of the source models. When the goal is accurate recognition under computational constraints, both DISTILLNEAREST and DISTILLWEIGHTED approaches outperform both transfer learning from strong ImageNet initializations as well as state-of-the-art semi-supervised techniques such as FixMatch. Averaged over 8 diverse target tasks our multi-source method outperforms the baselines by 5.6%-points and 4.5%-points, respectively. 
    more » « less
  3. The scarcity of labeled data has traditionally been the primary hindrance in building scalable supervised deep learning models that can retain adequate performance in the presence of various heterogeneities in sample distributions. Domain adaptation tries to address this issue by adapting features learned from a smaller set of labeled samples to that of the incoming unlabeled samples. The traditional domain adaptation approaches normally consider only a single source of labeled samples, but in real world use cases, labeled samples can originate from multiple-sources – providing motivation for multi-source domain adaptation (MSDA). Several MSDA approaches have been investigated for wearable sensor-based human activity recognition (HAR) in recent times, but their performance improvement compared to single source counterpart remained marginal. To remedy this performance gap that, we explore multiple avenues to align the conditional distributions in addition to the usual alignment of marginal ones. In our investigation, we extend an existing multi-source domain adaptation approach under semi-supervised settings. We assume the availability of partially labeled target domain data and further explore the pseudo labeling usage with a goal to achieve a performance similar to the former. In our experiments on three publicly available datasets, we find that a limited labeled target domain data and pseudo label data boost the performance over the unsupervised approach by 10-35% and 2-6%, respectively, in various domain adaptation scenarios. 
    more » « less
  4. null (Ed.)
    Text categorization is an essential task in Web content analysis. Considering the ever-evolving Web data and new emerging categories, instead of the laborious supervised setting, in this paper, we focus on the minimally-supervised setting that aims to categorize documents effectively, with a couple of seed documents annotated per category. We recognize that texts collected from the Web are often structure-rich, i.e., accompanied by various metadata. One can easily organize the corpus into a text-rich network, joining raw text documents with document attributes, high-quality phrases, label surface names as nodes, and their associations as edges. Such a network provides a holistic view of the corpus’ heterogeneous data sources and enables a joint optimization for network-based analysis and deep textual model training. We therefore propose a novel framework for minimally supervised categorization by learning from the text-rich network. Specifically, we jointly train two modules with different inductive biases – a text analysis module for text understanding and a network learning module for class-discriminative, scalable network learning. Each module generates pseudo training labels from the unlabeled document set, and both modules mutually enhance each other by co-training using pooled pseudo labels. We test our model on two real-world datasets. On the challenging e-commerce product categorization dataset with 683 categories, our experiments show that given only three seed documents per category, our framework can achieve an accuracy of about 92%, significantly outperforming all compared methods; our accuracy is only less than 2% away from the supervised BERT model trained on about 50K labeled documents. 
    more » « less
  5. Gorodkin, Jan (Ed.)
    Abstract Motivation When learning to subtype complex disease based on next-generation sequencing data, the amount of available data is often limited. Recent works have tried to leverage data from other domains to design better predictors in the target domain of interest with varying degrees of success. But they are either limited to the cases requiring the outcome label correspondence across domains or cannot leverage the label information at all. Moreover, the existing methods cannot usually benefit from other information available a priori such as gene interaction networks. Results In this article, we develop a generative optimal Bayesian supervised domain adaptation (OBSDA) model that can integrate RNA sequencing (RNA-Seq) data from different domains along with their labels for improving prediction accuracy in the target domain. Our model can be applied in cases where different domains share the same labels or have different ones. OBSDA is based on a hierarchical Bayesian negative binomial model with parameter factorization, for which the optimal predictor can be derived by marginalization of likelihood over the posterior of the parameters. We first provide an efficient Gibbs sampler for parameter inference in OBSDA. Then, we leverage the gene-gene network prior information and construct an informed and flexible variational family to infer the posterior distributions of model parameters. Comprehensive experiments on real-world RNA-Seq data demonstrate the superior performance of OBSDA, in terms of accuracy in identifying cancer subtypes by utilizing data from different domains. Moreover, we show that by taking advantage of the prior network information we can further improve the performance. Availability and implementation The source code for implementations of OBSDA and SI-OBSDA are available at the following link. https://github.com/SHBLK/BSDA. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less