Abstract As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles (HMs) in addition to the dominant (2, 2) multipole. These HMs can be detected with different approaches, such as the minimally-modeled burst search methods, and here we discuss one such approach based on the coherent WaveBurst (cWB) pipeline. During the inspiral phase the HMs produce chirps whose instantaneous frequency is a multiple of the dominant (2, 2) multipole, and here we describe how cWB can be used to detect these spectral features. The search is performed within suitable regions of the time-frequency representation; their shape is determined by optimizing the receiver operating characteristics. This novel method has already been used in the GW190814 discovery paper (Abbott et al 2020 Astrophys. J. Lett. 896 L44) and is very fast and flexible. Here we describe in full detail the procedure used to detect the (3, 3) multipole in GW190814 as well as searches for other HMs during the inspiral phase, and apply it to another event that displays HMs, GW190412, replicating the results obtained with different methods. The procedure described here can be used for the fast analysis of HMs and to support the findings obtained with the model-based Bayesian parameter estimates.
more »
« less
The search of higher multipole radiation in gravitational waves from compact binary coalescences by a minimally-modelled pipeline
Abstract The coherent WaveBurst (cWB) pipeline implements a minimally-modelled search to find a coherent response in the network of gravitational wave detectors of the LIGO-Virgo Col-laboration in the time-frequency domain. In this manuscript, we provide a timely introduction to an extension of the cWB analysis to detect spectral features beyond the main quadrupolar emission of gravitational waves during the inspiral phase of compact binary coalescences; more detailed discussion will be provided in a forthcoming paper [1]. The search is performed by defining specific regions in the time-frequency map to extract the energy of harmonics of main quadrupole mode in the inspiral phase. This method has already been used in the GW190814 discovery paper (Astrophys. J. Lett. 896 L44). Here we show the procedure to detect the (3, 3) multipole in GW190814 within the cWB framework.
more »
« less
- Award ID(s):
- 2110060
- PAR ID:
- 10344397
- Date Published:
- Journal Name:
- Journal of Physics: Conference Series
- Volume:
- 2156
- Issue:
- 1
- ISSN:
- 1742-6588
- Page Range / eLocation ID:
- 012081
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets.more » « less
-
Subjected to the tidal field of its companion, each component of a coalescing binary suffers a slow change in its mass (tidal heating) and spin (tidal torquing) during the inspiral and merger. For black holes, these changes are associated with their absorption of energy and angular momentum fluxes. This effect modifies the inspiral rate of the binary, and consequently, the phase and amplitude of its gravitational waveform. Numerical relativity (NR) waveforms contain these effects inherently, whereas analytical approximants for the early inspiral phase have to include them manually in the energy balance equation. In this work, we construct IMRPhenomD_Horizon, a frequency-domain gravitational waveform model that incorporates the effects of tidal heating of black holes. This is achieved by recalibrating the inspiral phase of the waveform model IMRPhenomD to incorporate the phase corrections for tidal heating. We also include corrections to the amplitude, but add them directly to the inspiral amplitude model of IMRPhenomD. First we demonstrate that the inclusion of the corrections, especially in the phase, confers an overall improvement in the phase agreement between the analytical inspiral model (uncalibrated SEOBNRv2) and NR data. The model presented here is faithful, with less than 1% mismatches against a set of hybrid waveforms (except for one outlier that barely breaches this limit). The recalibrated model shows mismatches of up to ∼14% with IMRPhenomD for high mass ratios and spins. Amplitude corrections become less significant for higher mass ratios, whereas the phase corrections leave more impact—suggesting that the former is practically irrelevant for gravitational wave data analysis in Advanced LIGO (aLIGO), Virgo and KAGRA. Comparing with a set of 219 numerical relativity waveforms, we find that the median of mismatches decreases by ∼4% in aLIGO zero-detuned high power noise curve, and by ∼1.5% with a flat noise curve. This implies a modest but notable improvement in waveform accuracy.more » « less
-
Abstract Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.more » « less
-
Abstract Continuous gravitational waves are nearly monochromatic signals emitted by asymmetries in rotating neutron stars. These signals have not yet been detected. Deep all-sky searches for continuous gravitational waves from isolated neutron stars require significant computational expense. Deep searches for neutron stars in binary systems are even more expensive, but these targets are potentially more promising emitters, especially in the hundreds of Hertz region, where ground-based gravitational-wave detectors are most sensitive. We present here an all-sky search for continuous signals with frequency between 300 and 500 Hz, from neutron stars in binary systems with orbital periods between 15 and 60 days and projected semimajor axes between 10 and 40 lt-s. This is the only binary search on Advanced LIGO data that probes this frequency range. Compared to previous results, our search is over an order of magnitude more sensitive. We do not detect any signals, but our results exclude plausible and unexplored neutron star configurations, for example, neutron stars with relative deformations greater than 3 × 10 −6 within 1 kpc from Earth and r -mode emission at the level of α ∼ a few 10 −4 within the same distance.more » « less
An official website of the United States government

