We propose a reference architecture of safety-critical or industry-critical human cyber-physical systems (CPSs) capable of expressing essential classes of system-level interactions between CPS and humans relevant for the societal acceptance of such systems. To reach this quality gate, the expressivity of the model must go beyond classical viewpoints such as operational, functional, and architectural views and views used for safety and security analysis. The model does so by incorporating elements of such systems for mutual introspections in situational awareness, capabilities, and intentions to enable a synergetic, trusted relation in the interaction of humans and CPSs, which we see as a prerequisite for their societal acceptance. The reference architecture is represented as a metamodel incorporating conceptual and behavioral semantic aspects. We illustrate the key concepts of the metamodel with examples from cooperative autonomous driving, the operating room of the future, cockpit-tower interaction, and crisis management.
more »
« less
Smart City Concept Based on Cyber-Physical Social Systems with Hierarchical Ethical Agents Approach
A smart city is considered a sustainable city that manages needed resources and makes autonomous decisions to improve the quality of life of its citizens. On the other hand, Cyber-Physical Systems (CPS) have been implemented as isolated systems inside the city. For instance, the traffic lights, autonomous navigation for cars, and so on. Instead, consider a smart city with an integrated CPS for independent blocks that can be interconnected in a central unit. However, when a CPS makes decisions about the integration of ethical concepts based on human perception, social space must be added, and so a CPS must be transformed into a Cyber-Physical Social System (CPSS). Furthermore, a new type of social interaction between all the elements in a CPSS within a smart city presents human behavioral challenges such as virtual-morality. This paper first proposes an Artificial Moral Agent with machine learning algorithms to regulate the interaction within the CPSS, adding itself to all the subsystems’ communication. Additionally, a moral agent structure is proposed with a morality filter as its fundamental component.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10344400
- Date Published:
- Journal Name:
- 23rd International Conference on Human-Computer Interaction (HCII 2021) - Universal Access in Human-Computer Interaction. Access to Media, Learning and Assistive Environments
- Volume:
- 12769
- Page Range / eLocation ID:
- 424–437
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Cyber-Physical Systems (CPS) are important components of critical infrastructure and must operate with high levels of reliability and security. We propose a conceptual approach to securing CPSs: the Cyber-Physical Immune System (CPIS), a collection of hardware and software elements deployed on top of a conventional CPS. Inspired by its biological counterpart, the CPIS comprises an independent network of distributed computing units that collects data from the conventional CPS, utilizes data-driven techniques to identify threats, adapts to the changing environment, alerts the user of any threats or anomalies, and deploys threat-mitigation strategies.more » « less
-
Recent technological advances provide the opportunities to bridge the physical world with cyber-space that leads to complex and multi-domain cyber physical systems (CPS) where physical systems are monitored and controlled using numerous smart sensors and cyber space to respond in real-time based on their operating environment. However, the rapid adoption of smart, adaptive and remotely accessible connected devices in CPS makes the cyberspace more complex and diverse as well as more vulnerable to multitude of cyber-attacks and adversaries. In this paper, we aim to design, develop and evaluate a distributed machine learning algorithm for adversarial resiliency where developed algorithm is expected to provide security in adversarial environment for critical mobile CPS.more » « less
-
With the development of sensing and communica- tion technologies in networked cyber-physical systems (CPSs), multi-agent reinforcement learning (MARL)-based methodolo- gies are integrated into the control process of physical systems and demonstrate prominent performance in a wide array of CPS domains, such as connected autonomous vehicles (CAVs). However, it remains challenging to mathematically characterize the improvement of the performance of CAVs with commu- nication and cooperation capability. When each individual autonomous vehicle is originally self-interest, we can not assume that all agents would cooperate naturally during the training process. In this work, we propose to reallocate the system’s total reward efficiently to motivate stable cooperation among autonomous vehicles. We formally define and quantify how to reallocate the system’s total reward to each agent under the proposed transferable utility game, such that communication- based cooperation among multi-agents increases the system’s total reward. We prove that Shapley value-based reward reallocation of MARL locates in the core if the transferable utility game is a convex game. Hence, the cooperation is stable and efficient and the agents should stay in the coalition or the cooperating group. We then propose a cooperative policy learning algorithm with Shapley value reward reallocation. In experiments, compared with several literature algorithms, we show the improvement of the mean episode system reward of CAV systems using our proposed algorithm.more » « less
-
Industries are embracing information technology and constructing more robust machines known as Cyber-Physical Systems(CPS) to automate processes. CPSs are envisioned to be pervasive, coordinating, and integrating computation, sensing, actuation, and physical processes. CPSs have various applications in life-critical scenarios, where their performance and reliability can have direct impacts on human safety and well-being. However, CPSs are vulnerable to malicious attacks, and researchers have developed detectors to identify such attacks in different contexts. Surprisingly, little work has been done to detect attacks on the actuators of CPS. Furthermore, actuators face a high risk of optimal hidden attacks designed by powerful attackers, which can push them into an unsafe state without detection. To the best of our knowledge, no such attacks on actuators have been developed yet. In this paper, we design an optimal hidden attack for actuators and evaluate its effectiveness. First, we develop a mathematical model for actuators and then create a linear program for convex optimization. Second, we solve the optimization problem and simulate the optimal attack.more » « less