- Award ID(s):
- 1913374
- PAR ID:
- 10344496
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature
- Volume:
- 604
- Issue:
- 7904
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 53 to 58
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay (0 νββ ) in 130 Te. CUORE uses a cryogenic array of 988 TeO 2 calorimeters operated at ∼10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors' energy-dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors.more » « less
-
We calculate the spin-flavor precession (SFP) of Dirac neutrinos induced by strong magnetic fields and finite neutrino magnetic moments in dense matter. As found in the case of Majorana neutrinos, the SFP of Dirac neutrinos is enhanced by the large magnetic field potential and suppressed by large matter potentials composed of the baryon density and the electron fraction. The SFP is possible irrespective of the large baryon density when the electron fraction is close to 1/3. The diagonal neutrino magnetic moments that are prohibited for Majorana neutrinos enable the spin precession of Dirac neutrinos without any flavor mixing. With supernova hydrodynamics simulation data, we discuss the possibility of the SFP of both Dirac and Majorana neutrinos in core-collapse supernovae. The SFP of Dirac neutrinos occurs at a radius where the electron fraction is 1/3. The required magnetic field of the proto-neutron star for the SFP is a few 10^{14} G at any explosion time. For the Majorana neutrinos, the required magnetic field fluctuates from 10^{13} G to 10^{15} G. Such a fluctuation of the magnetic field is more sensitive to the numerical scheme of the neutrino transport in the supernova simulation.more » « less
-
null (Ed.)Abstract The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in the isotope $$\mathrm {^{130}Te}$$ 130 Te . In this work we present the latest results on two searches for the double beta decay (DBD) of $$\mathrm {^{130}Te}$$ 130 Te to the first $$0^{+}_2$$ 0 2 + excited state of $$\mathrm {^{130}Xe}$$ 130 Xe : the $$0\nu \beta \beta $$ 0 ν β β decay and the Standard Model-allowed two-neutrinos double beta decay ( $$2\nu \beta \beta $$ 2 ν β β ). Both searches are based on a 372.5 kg $$\times $$ × yr TeO $$_2$$ 2 exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as $$\mathrm {S^{0\nu }_{1/2} = 5.6 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 0 ν = 5.6 × 10 24 yr for the $${0\nu \beta \beta }$$ 0 ν β β decay and $$\mathrm {S^{2\nu }_{1/2} = 2.1 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 2 ν = 2.1 × 10 24 yr for the $${2\nu \beta \beta }$$ 2 ν β β decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at $$90\%$$ 90 % C.I. on the decay half lives is obtained as: $$\mathrm {(T_{1/2})^{0\nu }_{0^+_2} > 5.9 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 0 ν > 5.9 × 10 24 yr for the $$0\nu \beta \beta $$ 0 ν β β mode and $$\mathrm {(T_{1/2})^{2\nu }_{0^+_2} > 1.3 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 2 ν > 1.3 × 10 24 yr for the $$2\nu \beta \beta $$ 2 ν β β mode. These represent the most stringent limits on the DBD of $$^{130}$$ 130 Te to excited states and improve by a factor $$\sim 5$$ ∼ 5 the previous results on this process.more » « less
-
With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos 𝜈𝑠→𝜈𝑎. We report new limits on fermionic dark matter absorption (𝜒+𝐴→𝜈+𝐴) and sub-GeV DM-nucleus 3→2 scattering (𝜒+𝜒+𝐴→𝜙+𝐴), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons). These searches utilize the (1–100)-keV low-energy region of a 37.5-kg y exposure collected by the Demonstrator between May 2016 and November 2019 using a set of 76Ge-enriched detectors whose surface exposure time was carefully controlled, resulting in extremely low levels of cosmogenic activation.more » « less
-
A bstract We present
ν DoBe, a Python tool for the computation of neutrinoless double beta decay (0νββ ) rates in terms of lepton-number-violating operators in the Standard Model Effective Field Theory (SMEFT). The tool can be used for automated calculations of 0νββ rates, electron spectra and angular correlations for all isotopes of experimental interest, for lepton-number-violating operators up to and including dimension 9. The tool takes care of renormalization-group running to lower energies and provides the matching to the low-energy effective field theory and, at lower scales, to a chiral effective field theory description of 0νββ rates. The user can specify different sets of nuclear matrix elements from various many-body methods and hadronic low-energy constants. The tool can be used to quickly generate analytical and numerical expressions for 0νββ rates and to generate a large variety of plots. In this work, we provide examples of possible use along with a detailed code documentation. The code can be accessed through:GitHub:
https://github.com/OScholer/nudobe Online User-Interface:
https://oscholer-nudobe-streamlit-4foz22.streamlit.app/