The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for
- Award ID(s):
- 1913374
- PAR ID:
- 10283284
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 81
- Issue:
- 7
- ISSN:
- 1434-6044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract decay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$$0\nu \beta \beta $$ crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$${\mathrm{TeO}}_{2}$$ result of the search for$$3{\mathrm{rd}}$$ , corresponding to a tonne-year of$$0\nu \beta \beta $$ exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$\mathrm{TeO}_{2}$$ decay in$$0\nu \beta \beta $$ ever conducted . We present the current status of CUORE search for$${}^{130}\mathrm{Te}$$ with the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$$0\nu \beta \beta $$ $${}^{130}\mathrm{Te}$$ decay half-life and decay to excited states of$$2\nu \beta \beta $$ , studies performed using an exposure of 300.7 kg yr.$${}^{130}\mathrm{Xe}$$ -
Abstract Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0 $$\nu \beta \beta $$ ν β β ), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0 $$\nu \beta \beta $$ ν β β of $$^{136}$$ 136 Xe with projected half-life sensitivity of $$1.35\times 10^{28}$$ 1.35 × 10 28 yr. To reach this sensitivity, the design goal for nEXO is $$\le $$ ≤ 1% energy resolution at the decay Q -value ( $$2458.07\pm 0.31$$ 2458.07 ± 0.31 keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163 K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay Q -value for the nEXO design.more » « less
-
Abstract The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937 1 . Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis 2 , the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0 νββ ) decay. Here we show results from the search for 0 νββ decay of 130 Te, using the latest advanced cryogenic calorimeters with the CUORE experiment 3 . CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0 νββ decay and set a lower bound of the process half-life as 2.2 × 10 25 years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment.more » « less
-
A bstract The NA62 experiment reports the branching ratio measurement $$ \mathrm{BR}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left({10.6}_{-3.4}^{+4.0}\left|{}_{\mathrm{stat}}\right.\pm {0.9}_{\mathrm{syst}}\right)\times {10}^{-11} $$ BR K + → π + ν ν ¯ = 10.6 − 3.4 + 4.0 stat ± 0.9 syst × 10 − 11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ decay, observed with a significance of 3.4 σ . The experiment achieves a single event sensitivity of (0 . 839 ± 0 . 054) × 10 − 11 , corresponding to 10.0 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . This measurement is also used to set limits on BR( K + → π + X ), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.more » « less
-
Abstract Cryogenic calorimetric experiments to search for neutrinoless double-beta decay (
) are highly competitive, scalable and versatile in isotope. The largest planned detector array, CUPID, is comprised of about 1500 individual Li$$0\nu \beta \beta $$ $$_{2}$$ MoO$$^{100}$$ detector modules with a further scale up envisioned for a follow up experiment (CUPID-1T). In this article, we present a novel detector concept targeting this second stage with a low impedance TES based readout for the Li$$_4$$ MoO$$_2$$ absorber that is easily mass-produced and lends itself to a multiplexed readout. We present the detector design and results from a first prototype detector operated at the NEXUS shallow underground facility at Fermilab. The detector is a 2-cm-side cube with 21 g mass that is strongly thermally coupled to its readout chip to allow rise-times of$$_4$$ 0.5 ms. This design is more than one order of magnitude faster than present NTD based detectors and is hence expected to effectively mitigate backgrounds generated through the pile-up of two independent two neutrino decay events coinciding close in time. Together with a baseline resolution of 1.95 keV (FWHM) these performance parameters extrapolate to a background index from pile-up as low as$$\sim $$ counts/keV/kg/yr in CUPID size crystals. The detector was calibrated up to the MeV region showing sufficient dynamic range for$$5\cdot 10^{-6}$$ searches. In combination with a SuperCDMS HVeV detector this setup also allowed us to perform a precision measurement of the scintillation time constants of Li$$0\nu \beta \beta $$ MoO$$_2$$ , which showed a primary component with a fast O(20$$_4$$ s) time scale.$$\upmu $$