skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of Electric Vehicles Charging Load Using Long Short-Term Memory Model
The number of electric vehicles (EV) has increased significantly in the past decades due to its advantages including emission reduction and improved energy efficiency. However, the adoption of EV could lead to overloading the grid and degrading the power quality of the distribution system. It also demands an increase in the number of EV charging stations. To meet the charging needs of 15 million EVs by the year 2030 with limited charging stations, prediction of charging needs, and reallocating charging resources are in emerging needs. In this study, long short-term memory (LSTM) and autoregressive and moving average models (ARMA) models were applied to predict charging loads with temporal profiles from 3 charging stations. Prediction accuracy was applied to evaluate the performance of the models. The LSTM models demonstrated a significant performance improvement compared to ARMA models. The results from this study lay a foundation to efficiently manage charge resources.  more » « less
Award ID(s):
2051113
PAR ID:
10344664
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Tran-SET 2021
Page Range / eLocation ID:
52-58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The transition to Electric Vehicles (EVs) for reducing urban greenhouse gas emissions is hindered by the lack of public charging infrastructure, particularly fast-charging stations. Given that electric vehicle fast charging stations (EVFCS) can burden the electricity grid, it is crucial for EVFCS to adopt sustainable energy supply methods while accommodating the growing demands of EVs. Despite recent research efforts to optimize the placement of renewable-powered EV charging stations, current planning methods face challenges when applied to a complex city scale and integrating with renewable energy resources. This study thus introduces a robust decision-making model for optimal EVFCS placement planning integrated with solar power supply in a large and complex urban environment (e.g., Chicago), utilizing an advantage actor-critic (A2C) deep reinforcement learning (DRL) approach. The model balances traffic demand with energy supply, strategically placing charging stations in areas with high traffic density and solar potential. As a result, the model is used to optimally place 1,000 charging stations with a random starting search approach, achieving total reward values of 74.30 %, and estimated the capacities of potential EVFCS. This study can inform the identification of suitable locations to advance the microgrid-based charging infrastructure systems in large urban environments. 
    more » « less
  2. By displacing gasoline and diesel fuels, electric cars and fleets offer significant public health benefits by reducing emissions from the transportation sector. However, public confidence in the reliability of charging infrastructure remains a fundamental barrier to adoption. Using large-scale social data and machine learning based on 12,720 U.S. electric vehicle charging stations, we provide national evidence on how well the existing charging infrastructure is serving the needs of the expanding population of EV drivers in 651 core-based statistical areas in the United States. Contrary to predictions, we find that stations at private charging locations do not outperform public charging locations provided by government. We also find evidence of higher negative sentiment in the dense urban centers, where issues of charge rage and congestion may be the most prominent. Overall, 40% of drivers using mobility apps have faced negative experiences at EV charging stations, a problem that needs to be fixed as the market expands. 
    more » « less
  3. Charging stations and electric vehicle (EV) charging networks signify a significant advancement in technology as a frontier application of the Social Internet of Things (SIoT), presenting both challenges and opportunities for current 6G wireless networks. One primary challenge in this integration is limited wireless network resources, particularly when serving a large number of users within distributed EV charging networks in the SIoT. Factors such as congestion during EV travel, varying EV user preferences, and uncertainties in decision-making regarding charging station resources significantly impact system operation and network resource allocation. To address these challenges, this paper develops a novel framework harnessing the potential of emerging technologies, specifically reconfigurable intelligent surfaces (RISs) and causal-structure-enhanced asynchronous advantage actor–critic (A3C) reinforcement learning techniques. This framework aims to optimize resource allocation, thereby enhancing communication support within EV charging networks. Through the integration of RIS technology, which enables control over electromagnetic waves, and the application of causal reinforcement learning algorithms, the framework dynamically adjusts resource allocation strategies to accommodate evolving conditions in EV charging networks. An essential aspect of this framework is its ability to simultaneously meet real-world social requirements, such as ensuring efficient utilization of network resources. Numerical simulation results validate the effectiveness and adaptability of this approach in improving wireless network efficiency and enhancing user experience within the SIoT context. Through these simulations, it becomes evident that the developed framework offers promising solutions to the challenges posed by integrating the SIoT with EV charging networks. 
    more » « less
  4. The electrification of transportation is a growing strategy to reduce mobile source emissions and air pollution globally. To encourage adoption of electric vehicles, there is a need for reliable evidence about pricing in pub-lic charging stations that can serve a greater number of communities. However, user-entered pricing information by thousands of charge point operators (CPOs) has created ambiguity for large-scale aggregation, increasing both the cost of analysis for researchers and search costs for consumers. In this paper, we use large language models to address standing challenges with price discovery in distributed digital data. We show that generative AI models can effectively extract pricing mechanisms from unstructured text with high accuracy, and at substantially lower cost of three to four orders of magnitude lower than human curation (USD 0.006 pennies per observation). We exploit the few-shot learning capabilities of GPT-4 with human-in-the-loop feedback—beating prior classification performance benchmarks with fewer training data. The most common pricing models include free, energy-based (per kWh), and time-based (per unit time), with tiered pricing (variable pricing based on usage) being the most prevalent among paid stations. Behavioral insights from a US nationally representative sample of 13,008 stations suggest that EV users are commonly frustrated with the slower than expected charging rates and the total cost of charging. This study uncovers additional consumer barriers to charging services concerning the need for better price standardization. 
    more » « less
  5. Abstract Extreme water levels (EWLs) resulting from cyclones pose significant flood hazards and risks to coastal communities and interconnected ecosystems. To date, physically based models have enabled accurate prediction of EWLs despite their inherent high computational cost. However, the applicability of these models is limited to data‐rich sites with diverse characteristics. The dependence on high quality spatiotemporal data, which is often computationally expensive, hinders the applicability of these models to regions of either limited or data‐scarce conditions. To address this challenge, we present a Long Short‐Term Memory (LSTM) network framework to predict the evolution of EWLs beyond site‐specific training stations. The framework, named LSTM‐Station Approximated Models (LSTM‐SAM), consists of a collection of bidirectional LSTM models enhanced with a custom attention mechanism layer embedded in the architecture. LSTM‐SAM incorporates a transfer learning approach applicable to target (tide‐gage) stations along the U.S. Atlantic Coast. Importantly, LSTM‐SAM helps analyze: (a) the underlying limitations associated with transfer learning, (b) evaluate EWL predictions beyond training domains, and (c) capture the evolution of EWL caused by tropical and extratropical cyclones. The framework demonstrates satisfactory performance with “transferable” models achieving Kling‐Gupta Efficiency (KGE), Nash‐Sutcliffe Efficiency (NSE), and Root‐Mean Square Error (RMSE) ranging from 0.78 to 0.92, 0.90 to 0.97, and 0.09–0.18 m at the target stations, respectively. We show that LSTM‐SAM can accurately predict not only EWLs but also their evolution over time, that is, onset, peak, and dissipation, which could assist in operational flood forecasting in regions with limited resources to set up physically based models. 
    more » « less