skip to main content


Title: Towards Learning Ocean Models for Long-term Navigation in Dynamic Environments
The use of underwater robot systems, including Autonomous Underwater Vehicles (AUVs), has been studied as an effective way of monitoring and exploring dynamic aquatic environments. Furthermore, advances in artificial intelligence techniques and computer processing led to a significant effort towards fully autonomous navigation and energy-efficient approaches. In this work, we formulate a reinforcement learning framework for long-term navigation of underwater vehicles in dynamic environments using the techniques of tile coding and eligibility traces. Simulation results used actual oceanic data from the Regional Ocean Modeling System (ROMS) data set collected in Southern California Bight (SCB) region, California, USA  more » « less
Award ID(s):
2024733 2034123
NSF-PAR ID:
10344694
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
OCEANS 2022 - Chennai
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientists continue to study the red tide and fish-kill events happening in Florida. Machine learning applications using remote sensing data on coastal waters to monitor water quality parameters and detect harmful algal blooms are also being studied. Unmanned Surface Vehicles (USVs) and Autonomous Underwater Vehicles (AUVs) are often deployed on data collection and disaster response missions. To enhance study and mitigation efforts, robots must be able to use available data to navigate these underwater environments. In this study, we compute a satellite-derived underwater environment (SDUE) model by implementing a supervised machine learning model where remote sensing reflectance (Rrs) indices are labeled with in-situ data they correlate with. The models predict bathymetry and water quality parameters given a recent remote sensing image. In our experiment, we use Sentine1-2 (S2) images and in-situ data of the Biscayne Bay to create an SDUE that can be used as a Chlorophyll-a map. The SDUE is then used in an Extended Kalman Filter (EKF) application that solves an underwater vehicle localization and navigation problem. 
    more » « less
  2. Inertial navigation provides a small footprint, low-power, and low-cost pathway for localization in GPS-denied environments on extremely resource-constrained Internet-of-Things (IoT) platforms. Traditionally, application-specific heuristics and physics-based kinematic models are used to mitigate the curse of drift in inertial odometry. These techniques, albeit lightweight, fail to handle domain shifts and environmental non-linearities. Recently, deep neural-inertial sequence learning has shown superior odometric resolution in capturing non-linear motion dynamics without human knowledge over heuristic-based methods. These AI-based techniques are data-hungry, suffer from excessive resource usage, and cannot guarantee following the underlying system physics. This paper highlights the unique methods, opportunities, and challenges in porting real-time AI-enhanced inertial navigation algorithms onto IoT platforms. First, we discuss how platform-aware neural architecture search coupled with ultra-lightweight model backbones can yield neural-inertial odometry models that are 31–134 x smaller yet achieve or exceed the localization resolution of state-of-the-art AI-enhanced techniques. The framework can generate models suitable for locating humans, animals, underwater sensors, aerial vehicles, and precision robots. Next, we showcase how techniques from neurosymbolic AI can yield physics-informed and interpretable neural-inertial navigation models. Afterward, we present opportunities for fine-tuning pre-trained odometry models in a new domain with as little as 1 minute of labeled data, while discussing inexpensive data collection and labeling techniques. Finally, we identify several open research challenges that demand careful consideration moving forward. 
    more » « less
  3. Route Planning Systems (RPS) are a core component of autonomous personal transport systems essential for safe and efficient navigation of dynamic urban environments with the support of edge-based smart city infrastructure, but they also raise concerns about user route privacy in the context of both privately-owned and commercial vehicles. Numerous high profile data breaches in recent years have fortunately motivated research on privacy-preserving RPS, but most of them are rendered impractical by greatly increased communication and processing overhead. We address this by proposing an approach called Hierarchical Privacy-Preserving Route Planning (HPRoP) which divides and distributes the route planning task across multiple levels, and protects locations along the entire route. This is done by combining Inertial Flow partitioning, Private Information Retrieval (PIR), and Edge Computing techniques with our novel route planning heuristic algorithm. Normalized metrics were also formulated to quantify the privacy of the source/destination points (endpoint location privacy) and the route itself (route privacy). Evaluation on a simulated road network showed that HPRoP reliably produces routes differing only by ≤20% in length from optimal shortest paths, with completion times within ∼ 25 seconds which is reasonable for a PIR-based approach. On top of this, more than half of the produced routes achieved near-optimal endpoint location privacy (∼ 1.0) and good route privacy (≥ 0.8). 
    more » « less
  4. Localization in underwater environments is a fundamental problem for autonomous vehicles with important applications such as underwater ecology monitoring, infrastructure maintenance, and conservation of marine species. However, several traditional sensing modalities used for localization in outdoor robotics (e.g., GPS, compasses, LIDAR, and Vision) are compromised in underwater scenarios. In addition, other problems such as aliasing, drifting, and dynamic changes in the environment also affect state estimation in aquatic environments. Motivated by these issues, we propose novel state estimation algorithms for underwater vehicles that can read noisy sensor observations in spatio-temporal varying fields in water (e.g., temperature, pH, chlorophyll-A, and dissolved oxygen) and have access to a model of the evolution of the fields as a set of partial differential equations. We frame the underwater robot localization in an optimization framework and formulate, study, and solve the state-estimation problem. First, we find the most likely position given a sequence of observations, and we prove upper and lower bounds for the estimation error given information about the error and the fields. Our methodology can find the actual location within a 95% confidence interval around the median in over 90% of the cases in different conditions and extensions. 
    more » « less
  5. The emerging sector of offshore kelp aquaculture represents an opportunity to produce biofuel feedstock to help meet growing energy demand. Giant kelp represents an attractive aquaculture crop due to its rapid growth and production, however precision farming over large scales is required to make this crop economically viable. These demands necessitate high frequency monitoring to ensure outplant success, maximum production, and optimum quality of harvested biomass, while the long distance from shore and large necessary scales of production makes in person monitoring impractical. Remote sensing offers a practical monitoring solution and nascent imaging technologies could be leveraged to provide daily products of the kelp canopy and subsurface structures over unprecedented spatial scales. Here, we evaluate the efficacy of remote sensing from satellites and aerial and underwater autonomous vehicles as potential monitoring platforms for offshore kelp aquaculture farms. Decadal-scale analyses of the Southern California Bight showed that high offshore summertime cloud cover restricts the ability of satellite sensors to provide high frequency direct monitoring of these farms. By contrast, daily monitoring of offshore farms using sensors mounted to aerial and underwater drones seems promising. Small Unoccupied Aircraft Systems (sUAS) carrying lightweight optical sensors can provide estimates of canopy area, density, and tissue nitrogen content on the time and space scales necessary for observing changes in this highly dynamic species. Underwater color imagery can be rapidly classified using deep learning models to identify kelp outplants on a longline farm and high acoustic returns of kelp pneumatocysts from side scan sonar imagery signal an ability to monitor the subsurface development of kelp fronds. Current sensing technologies can be used to develop additional machine learning and spectral algorithms to monitor outplant health and canopy macromolecular content, however future developments in vehicle and infrastructure technologies are necessary to reduce costs and transcend operational limitations for continuous deployment in an offshore setting. 
    more » « less