skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: U.S.-Japan Collaboration for Shake Table Testing of a Frame-Spine System with Force-Limiting Connections
Conventional lateral force-resisting systems can provide a stable, ductile response but also experience significant inelastic demands, rendering repairs impractical or uneconomical. Thus, there is a need for novel structural systems that protect structural and nonstructural components to reduce post-earthquake repairs and downtime. A U.S.-Japan research team – including three U.S. universities, two Japanese universities, and two major experimental research labs – is developing a structural solution to reduce peak drift and acceleration demands, thereby protecting buildings, their contents, and occupants during major earthquakes. The primary components of the system are: (1) steel base moment-resisting frames designed and detailed to behave in the inelastic range and dissipate energy, (2) stiff and strong elastic spines designed to remain essentially elastic to redistribute seismic demands more uniformly over the building height, and (3) force-limiting connections (FLC) that connect the frame to the spines to provide a yielding mechanism that limits acceleration demands. This economical earthquake-resilient system is intended to be used in essential facilities, such as hospitals, where damage to the buildings and contents and occupant injuries must be prevented and where continuity of operation is imperative. The system was recently tested at full scale at the E-Defense shake-table facility in Miki, Japan. This paper provides an overview of pre-test numerical simulations, shake-table test setup and instrumentation, and preliminary test results.  more » « less
Award ID(s):
1926365 2309829
PAR ID:
10344906
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
17th World Conference on Earthquake Engineering (17WCEE)
Date Published:
Journal Name:
17th World Conference on Earthquake Engineering, 17WCEE
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new seismic-resilient structural system is being developed to protect buildings, their contents, and occupants during major earthquakes. This economical system is intended for essential facilities, such as hospitals, where damage to the buildings and contents and occupant injuries must be prevented and where continuity of operation is imperative. The primary components of the Frame-Spine-FLC System are: (1) steel base moment-resisting frames designed and detailed to behave in the inelastic range and dissipate energy, (2) stiff and strong elastic spines designed to remain essentially elastic to redistribute seismic demands more uniformly over the building height, and (3) force-limiting connections (FLC) that connect the frame to the spines to provide a yielding mechanism that limits acceleration demands. An international team, including three U.S. universities, two Japanese universities and two major experimental research labs, is collaborating on this project and recently conducted full-scale shake-table testing at the E-Defense facility in Miki, Japan. The test building represents a hospital facility and includes realistic nonstructural components and medical equipment. This paper provides an overview of the shake-table testing program and presents preliminary results that demonstrate the seismic stability response of the Frame-Spine-FLC System and the overall viability of the new concept. 
    more » « less
  2. Abstract. A novel structural system is being investigated collaboratively – by an international team including three U.S. universities, two Japanese universities and two major experimental research labs – as a means to protect essential facilities, such as hospitals, where damage to the building and its contents and occupant injuries must be prevented and where continuity of operation is imperative during large earthquakes. The new system employs practical structural components, including (1) flexible steel moment frames, (2) stiff steel elastic spines and (3) force-limiting connections (FLC) that connect the frames to the spines, to economically control building response and prevent damaging levels of displacement and acceleration. The moment frames serve as the economical primary element of the system to resist a significant proportion of the lateral load, dissipate energy through controlled nonlinear response and provide persistent positive lateral stiffness. The spines distribute response evenly over the height of the building and prevent story mechanisms, and the FLCs reduce higher-mode effects and provide supplemental energy dissipation. The Frame- Spine-FLC System development is focusing on new construction, but it also has potential for use in seismic retrofit of deficient existing buildings. This paper provides an overview of the ongoing research project, including selected FLC cyclic test results and a description of the full-scale shake-table testing of a building with the Frame-Spine-FLC System, which represents a hospital facility and includes realistic nonstructural components and medical equipment. 
    more » « less
  3. A novel structural system is being developed collaboratively by researchers from the United States and Japan to protect essential facilities, such as hospitals, where damage to the building and its contents and occupant injuries must be prevented and where continuity of operation must be maintained. The development is focusing on new construction, but it also has potential for use in seismic retrofit of deficient existing buildings. The new system employs practical structural components, including (1) flexible steel moment frames, (2) stiff steel elastic spines and (3) force-limiting connections (FLC) that connect the frames to the spines, to economically control building response and prevent damaging levels of displacement and acceleration. The moment frames serve as the economical primary element of the system to resist a significant proportion of the lateral load, dissipate energy through controlled nonlinear response and provide persistent positive lateral stiffness. The spines distribute response evenly over the height of the building and prevent story mechanisms, and the FLC reduce higher-mode effects and provide supplemental energy dissipation. The full-scale shake-table testing of a building with the Frame-Spine-FLC System, which represents a hospital facility and includes realistic nonstructural components and medical equipment, validated the functionality of the structural system. 
    more » « less
  4. Abstract In light of the significant damage observed after earthquakes in Japan and New Zealand, enhanced performing seismic force‐resisting systems and energy dissipation devices are increasingly being utilized in buildings. Numerical models are needed to estimate the seismic response of these systems for seismic design or assessment. While there have been studies on modeling uncertainty, selecting the model features most important to response can remain ambiguous, especially if the structure employs less well‐established lateral force‐resisting systems and components. Herein, a global sensitivity analysis was used to address modeling uncertainty in specimens with elastic spines and force‐limiting connections (FLCs) physically tested at full‐scale at the E‐Defense shake table in Japan. Modeling uncertainty was addressed for both model class and model parameter uncertainty by varying primary models to develop several secondary models according to pre‐established uncertainty groups. Numerical estimates of peak story drift ratio and floor acceleration were compared to the results from the experimental testing program using confidence intervals and root‐mean‐square error. Metrics such as the coefficient of variation, variance, linear Pearson correlation coefficient, and Sobol index were used to gain intuition about each model feature's contribution to the dispersion in estimates of the engineering demands. Peak floor acceleration was found to be more sensitive to modeling uncertainty compared to story drift ratio. Assumptions for the spine‐to‐frame connection significantly impacted estimates of peak floor accelerations, which could influence future design methods for spines and FLC in enhanced lateral‐force resisting systems. 
    more » « less
  5. This project will develop a new structural system that will protect buildings, their contents, and occupants during large earthquakes and will enable immediate post-earthquake occupancy. This earthquake-resilient structural system will be particularly valuable for essential facilities, such as hospitals, where damage to buildings and contents and occupant injuries must be prevented and where continuous occupancy performance is imperative. The new system will use practical structural components to economically protect a building from damaging displacements and accelerations. The project team will collaborate with Japanese researchers to study the new system with full-scale earthquake simulations using the 3D Full-Scale Earthquake Testing Facility (E-Defense) located in Miki, Japan, and operated by the National Research Institute for Earth Science and Disaster Resilience. This project will advance national health, prosperity, and welfare by preventing injuries and loss of human life and minimizing social and economic disruption of buildings due to large earthquakes. An online course on resilient seismic design will be developed and offered through the American Institute of Steel Construction night school program, which will be of interest to practicing engineers, researchers, and students across the country. This project contributes to NSF's role in the National Earthquake Hazards Reduction Program. The novel steel frame-spine lateral force-resisting system with force-limiting connections (FLC) that will be developed in this project will control multi-modal seismic response to protect a building and provide resilient structural and non-structural building performance. This frame-spine-FLC system will rely on a conventional, economical base system that resists a significant proportion of the lateral load. The system judiciously employs floor-level force-limiting deformable connections and an elastic spine to protect the base system. Integrated experiments and numerical simulations will provide comprehensive understanding of the new frame-spine-FLC system, including rich full-scale experimental data on building seismic performance with combined in-plane, out-of-plane, and torsional response under 3D excitation. The FLCs will be tested using the NHERI facility at Lehigh University. This project will be conducted in collaboration with an ongoing synergistic research program in Japan. The extensive dataset from this integrated U.S.-Japan research program will enable unique comparisons of structural and non-structural performance, including critical acceleration-sensitive hospital contents that directly affect the health and safety of patients. In addition, the dataset will enable the advancement of computational modeling for the assessment of building performance and the development of practical, accurate models for use in design that capture the complex 3D structural response that occurs during an earthquake. 
    more » « less