skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling uncertainty of specimens employing spines and force‐limiting connections tested at E‐defense shake table
Abstract In light of the significant damage observed after earthquakes in Japan and New Zealand, enhanced performing seismic force‐resisting systems and energy dissipation devices are increasingly being utilized in buildings. Numerical models are needed to estimate the seismic response of these systems for seismic design or assessment. While there have been studies on modeling uncertainty, selecting the model features most important to response can remain ambiguous, especially if the structure employs less well‐established lateral force‐resisting systems and components. Herein, a global sensitivity analysis was used to address modeling uncertainty in specimens with elastic spines and force‐limiting connections (FLCs) physically tested at full‐scale at the E‐Defense shake table in Japan. Modeling uncertainty was addressed for both model class and model parameter uncertainty by varying primary models to develop several secondary models according to pre‐established uncertainty groups. Numerical estimates of peak story drift ratio and floor acceleration were compared to the results from the experimental testing program using confidence intervals and root‐mean‐square error. Metrics such as the coefficient of variation, variance, linear Pearson correlation coefficient, and Sobol index were used to gain intuition about each model feature's contribution to the dispersion in estimates of the engineering demands. Peak floor acceleration was found to be more sensitive to modeling uncertainty compared to story drift ratio. Assumptions for the spine‐to‐frame connection significantly impacted estimates of peak floor accelerations, which could influence future design methods for spines and FLC in enhanced lateral‐force resisting systems.  more » « less
Award ID(s):
1928906 2037771 1926326 2309829
PAR ID:
10441508
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earthquake Engineering & Structural Dynamics
Volume:
52
Issue:
14
ISSN:
0098-8847
Format(s):
Medium: X Size: p. 4638-4659
Size(s):
p. 4638-4659
Sponsoring Org:
National Science Foundation
More Like this
  1. Conventional lateral force-resisting systems can provide a stable, ductile response but also experience significant inelastic demands, rendering repairs impractical or uneconomical. Thus, there is a need for novel structural systems that protect structural and nonstructural components to reduce post-earthquake repairs and downtime. A U.S.-Japan research team – including three U.S. universities, two Japanese universities, and two major experimental research labs – is developing a structural solution to reduce peak drift and acceleration demands, thereby protecting buildings, their contents, and occupants during major earthquakes. The primary components of the system are: (1) steel base moment-resisting frames designed and detailed to behave in the inelastic range and dissipate energy, (2) stiff and strong elastic spines designed to remain essentially elastic to redistribute seismic demands more uniformly over the building height, and (3) force-limiting connections (FLC) that connect the frame to the spines to provide a yielding mechanism that limits acceleration demands. This economical earthquake-resilient system is intended to be used in essential facilities, such as hospitals, where damage to the buildings and contents and occupant injuries must be prevented and where continuity of operation is imperative. The system was recently tested at full scale at the E-Defense shake-table facility in Miki, Japan. This paper provides an overview of pre-test numerical simulations, shake-table test setup and instrumentation, and preliminary test results. 
    more » « less
  2. Steel energy dissipators can be combined with mass timber in integrated seismic lateral force–resisting systems to achieve designs with enhanced seismic performance and sustainability benefits. Examples of such integration include the use of mass timber post-tensioned rocking walls equipped with steel energy dissipation devices. This study proposes a solution using buckling-restrained boundary elements (BRBs) with mass timber walls detailed to pivot about a pinned base. This design allows the walls to rotate with minimal flexural restraint, distributing drift demands more uniformly with building height and reducing crushing damage at the wall base. Experimental quasi-static cyclic tests and numerical simulations were used to characterize the first- and higher-mode behavior of a full-scale three-story building featuring a mass timber gravity system and the proposed mass timber-BRB system. Under first-mode loading, the specimen reached 4% roof drift ratio with stable hysteretic behavior and a nearly uniform story drift profile. While residual drifts were nonnegligible due to the lack of self-centering, analytical estimates indicate realignment is likely feasible at the design earthquake level. Under second-mode loading, the specimen exhibited near-linear behavior with high stiffness. Experimental results were corroborated with numerical simulations for the isolated gravity frame, first-mode-like, and second-mode-like loading protocols. It is expected that results from this study will facilitate greater use of mass timber seismic lateral force–resisting systems. 
    more » « less
  3. Numerical modeling is widely used in structural engineering to represent buildings response under seismic loading conditions. However, even though numerical modeling is a common tool to characterize the behavior of structures, modeling uncertainties can lead to a broad range of expected response, particularly when representing the behavior of novel systems or components. Addressing different modeling choices can provide more informed insights into the response of structures, especially prior to conducting experimental tests or participating in blind prediction contests. Herein, blind response prediction of a novel steel system was conducted before testing at the E-Defense facility in Japan. The full-scale specimen consisted of a weak Moment-Resisting Frame (MRF) retrofitted with steel spines and force-limiting connections (FLC). The set of pre-test predictions involved addressing of different modeling choices to overcome the many sources of epistemic uncertainties and to provide greater confidence in the design and experimental testing program. Several models were subjected to the records specific to the testing program (Northridge Sepulveda and JMA Kobe) to estimate drift and acceleration responses. Numerical results were compared to the experimental data from the shake-table tests. Although all the models were able to represent general trends in drifts and accelerations and enabled proper development of the testing plan, peak response varied significantly depending on the modeling choices, especially those altering the system’s natural periods or those leading to different yielding patterns. 
    more » « less
  4. A lateral force resisting system (LFRS) comprised of one eight-foot-wide Mass Ply Panel (MPP) with Buckling-Restrained Braces (BRBs) was attached to the building frame and tested following a cyclic quasi-static loading protocol up to 4% roof drift ratio. This system was designed to pivot about a pinned base, allowing the wall to rotate with minimal flexural restraint, thereby distributing drift demands more uniformly across the building height and reducing crushing damage at the wall base. Under first-mode loading, the system exhibited stable hysteretic behavior with a nearly uniform story drift profile, while second-mode loading revealed near-linear behavior with high stiffness. Experimental results provide valuable insights into the behavior of mass timber seismic lateral force-resisting systems and can be reused to develop and validate design guidelines for their broader implementation in seismic regions. 
    more » « less
  5. Mid-rise moment resisting frames (MRF) which utilize supplemental pinned-base spines (spine) to prevent the formation of story mechanisms experience higher mode accelerations at near elastic spectral values. Force Limiting Connections (FLC) can be introduced to reduce the floor accelerations from the higher mode responses while having small impact on first-mode response and maintaining the story mechanism prevention from the spine. Results from nonlinear response history analysis (NRHA) of a 4-story MRF-Spine system show how floor accelerations for higher modes are reduced with the addition of FLC placed between the MRF and spine. Peak effective pseudo accelerations are utilized to show how pseudo spectral accelerations are reduced by the introduction of FLC. Full-scale testing of the 4-storyMRF-Spine structure supports the numerical results of theMRF-Spine andMRF-Spine-FLC numerical analyses. These results show the potential benefits of adding FLC to MRF-Spine systems. 
    more » « less